Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A fragmentary system of the classical propositional calculus, in which the law C N N αα is valid instead of the law CαN N α, is presented.
EN
In this article we consider two systems of Lukasiewicz's three- valued modal propositional calculus. One of them is the system based on such primary terms as the disjunction (A), negation (N) and necessity (L), whereas the second is based on such primary terms as the implication (C), negation (N) and definitively improved by modal necessity terms. The both systems are definitively equivalent.
EN
In [1] the following theorem relating the existence of one-element base for spacious class of axiomatizable propositional calculus has been given: Theorem 1. System L, as well as each axiomatizable system propositional calculus, contains sentences "CpCqp" and „CpCqCCpCqrr" (or "CpCqCCpCqrCsr"), possesses the base consisting of only one sentence 1. In Postscript added to the English translation of publication [1] 2 the outline of proof of the above theorem, found by R. McKenzie, has been given. Author of the article advises to give the full proof of Theorem 1, because the outline contained in Postscript does not contain essential reasonings for the proof.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.