Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 40

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The article deals with the problem of investigating the correlations between the loading rate and absorbed energy capability dependence of composite energy absorbing structures. Energy absorbing structures dissipate impact kinetic energy by means of crushing their structure. Numerous investigations have been conducted to evaluate the dependence between the loading velocity and Energy Absorbed (EA) for composites, however, the results are quite different and sometimes inconsistent. The material properties defined during static tests are possible to be applied at the initial stage of numerical calculations. More advanced and accurate target simulations require data from dynamic load tests. Single energy absorbing elements and three-element energy absorbing structures were subjected to static and dynamic investigations. The single energy absorbing elements were tube-shaped and built of epoxy composites reinforced with glass fabric. Fragments of sandwich energy absorbing composite elements were prepared from three tube elements arranged symmetrically on an equilateral triangle plan and stuck between composite plates. Static and dynamic energy absorbing tests were conducted. The specimens were loaded statically on a tension machine - Instron 8802. The specimens were compressed at a constant load velocity equal to 40 mm/min (0.0007 m/s). The dynamic tests were performed on a spring impact hammer. The impact load velocity was about 6.0 m/s. Based on the obtained results, it was concluded that the load velocity of a glass/epoxy composite specimen crush leads to an EA decrease. B The behaviour of both single energy absorbing elements and multi-element fragments of energy absorbing constructions was compared.
PL
W pracy zbadano energochłonność kompozytów polimerowych wzmacnianych tkaniną szklaną w warunkach obciążeń dynamicznych i statycznych. Porównano zachowanie pojedynczych elementów energochłonnych i kilkuelementowych fragmentów konstrukcji energochłonnych. W licznych pracach przedstawionych w literaturze poświęconej tej tematyce podano wyniki badań wpływu prędkości na EA, jednak uzyskane w nich wyniki nie są jednoznaczne. W niektórych pracach stwierdzono, że EA nie zależy od prędkości uderzenia, natomiast w innych pracach - że EA rośnie lub maleje wraz ze wzrostem prędkości. Konstrukcje energochłonne ze swej natury narażone są na obciążenia udarowe. Pochłanianie energii uderzenia polega na zamianie ujemnego przyrostu energii kinetycznej impaktu na pracę niszczenia konstrukcji energochłonnej. W obliczenia numerycznych wymagane są dane materiałowe pozwalające na obliczenie zachowania się konstrukcji energochłonnej podczas obciążeń udarowych. W pierwszej fazie obliczeń można wykorzystać właściwości określone na podstawie badań statycznych, jednak w docelowych opracowaniach powinien znaleźć się model odzwierciedlający zachowanie się kompozytu w warunkach obciążeń dynamicznych. Badaniom statycznym i dynamicznym w zakresie prędkości obciążenia od 0,0007 do 6,0 m/s poddano pojedyncze elementy energochłonne i fragmenty przekładkowych konstrukcji energochłonnych. Materiałem próbek był kompozyt polimerowy z żywicy epoksydowej wzmacniany tkaniną szklaną o strukturze [(0/90)T]n. Pojedyncze elementy energochłonne wykonane zostały w postaci rurek o średnicy wewnętrznej 40 mm. Fragmenty przekładkowych konstrukcji energochłonnych złożono z trzech elementów energochłonnych rozłożonych symetrycznie na planie trójkąta równobocznego i przyklejonych pomiędzy przekładkami wykonanymi z płyt kompozytowych. Eksperymenty wykonano na dwóch stanowiskach badawczych. Energochłonne badania statyczne przeprowadzono na maszynie wytrzymałościowej z napędem hydraulicznym Instron 8802. Próbki były ściskane ze stałą prędkością obciążenia wynoszącą 40 mm/min. (0,0007 m/s). Badania dynamiczne przeprowadzono na sprężynowym młocie udarowym. Prędkość początkowa uderzenia wynosiła 6,0 m/s. Na podstawie otrzymanych wyników badań eksperymentalnych stwierdzono, że wzrost prędkości niszczenia próbek kompozytowych powoduje spadek energii absorbowanej w przedziale prędkości od 0,0007 do 6,0 m/s. Zarówno pojedyncze elementy energochłonne, jak również struktury energochłonne zachowują się podobnie. Energia absorbowana maleje wraz ze wzrostem prędkości obciążenia. Wyniki badań zostaną wykorzystane do budowy modelu numerycznego panelu ochronnego przeciw uderzeniom pociskami rakietowymi i minami.
EN
The use and the combination of new, high efficient materials for crashworthiness is of great interest nowadays. Foamed materials are commonly used to increase efficiency of composite materials. Based on the results obtained by Brachos and Douglas, it can be concluded that the sum of the energy absorption capabilities of the foamed filling and unfilled composite tubes is smaller than the energy absorbed by the tubes filled with the same filling. The paper presents the results of the experimental investigations into the influence of filling the tubes with different materials on the impact energy absorption capability. The tube shaped specimens made of epoxy composite, reinforced with carbon or glass fabrics were filled with foamed aluminium or foamed poly(vinyl chloride). It was proved that the foamed materials increase the energy absorption and the absorbed energy of the tubes filled with foams is greater than the sum of the energy absorbed by the composite tube without filling and the foamed material itself investigated separately, when the wall thickness is more than 2 mm. The investigations of the filled tubes with the thickness of walls equal to 1 mm showed lower absorbed energy values because the crushing force had decreased during the crush. The investigations were executed to show what are the effects of filling composite energy absorbing elements in the shape of tubes with foamed materials. Additionally, influence of tube wall thickness and crush mechanism were studied.
EN
The paper presents the results of the experimental static axial crush performance of unfilled and filled composite tubes. Composites are widely used as materials for energy absorbing structures because of their low density and a very high absorbed energy in relation to the mass ratio. Foamed materials are used in order to additionally increase their efficiency, because of stabilizing the progressive crush. It was proved by many authors that various foamed materials positively influence the energy absorption. In this work authors took effort to evaluate a very different material as a filler of common composite elements . elastomers. Elastomers are materials characterised by very high crush strains and viscoelastic properties. The tube shaped specimens made of epoxy composite, reinforced with carbon or glass fabrics were filled with elastomers of 40; 60; 70 and 90. ShA hardnesses. The influence of the elastomer hardness and the filling degree on the energy absorption factor (EA) was evaluated. The degree of filling the specimens with elastomers is determined by a different size of the elastomer perforation. Elastomers have a negative impact on the energy absorbed by the composite tubes.
EN
In the work, the attempt to determine the influence of loading rate on temperature of the surface of the crushed composite energy absorbing elements was undertaken. The specimens made of epoxy composites reinforced with glass fabrics and carbon fabrics of the structures [(0/90)T ]n were subjected to dynamic investigations. Thermovision investigations were conducted during energy absorbing tests. A thermovision camera enables the measurement of the temperature on the whole surface of the specimen visible in the camera lens while the measurement with the use of thermocouple is only local and has great heat inertia. During the investigations, the increase of specimen temperature related to impact velocity occurs. The temperature increase is caused by friction between the particles of the crushed specimen and by friction between the specimen and the support of the strength machine. At high loading rates, the increase of temperature on the surface of the specimens was significantly greater than the softening temperature of the epoxy resin E-53.
PL
W pracy przedstawiono wyniki badań doświadczalnych elastomerów o twardościach: 40, 60, 70 i 90 w stopniach określonych metodą Shore'a w skali A. Z badań energochłonnych rurek kompozytowych wypełnionych elastomerami określono wpływ stopnia wypełnienia rurek i twardości elastomeru na wartość pochłanianej energii uderzenia. Przedstawiono też mechanizm niszczenia próbek oraz określono właściwości mechaniczne elastomerów o różnej twardości z prób rozciągania, ściskania i obciążenia okresowo zmiennego.
EN
The paper presents the results of experimental investigations of the influence of filling of the tubes with elastomers on their impact energy absorption capability. Elastomers of 40; 60; 70 and 90 hardnesses in the degrees determined by Shore's method in A scale were investigated. Composite tubes were made of epoxy resin matrix (E-53) reinforced with carbon fabric TENA X HTA (C/E) or glass fabric STR-012-350-110 (S/E) and filled with elastomers of a different filling degree level and hardness. The dimensions of the tubes subjected to the examinations were: diameter ø40 mm and length 50 mm. The degree of filling of the specimens with elastomers is determined by percentage filling of the inner volume of the tube with elastomer of different perforation size (the number and the diameter of the holes made in elastomers). The energy absorbing tests were performed on the testing machine Instron 8802. The specimens placed between two flat plates were compressed at the constant load rate equal to 40 mm/min. The maximal shortening of the specimens was equal to 30 mm. On the basis of these data, the graphs of crush force in terms of the specimen shortening were outlined (load – displacement). The influence of the degree of filling of the composite tubes and the elastomer hardness on the energy absorbing capacity was evaluated from the energy absorbing tests. The paper covers the discussion of the crush mechanism of the specimens. The mechanical properties of elastomers used in the tests were evaluated from axial tension and compression load as well as from changing load tests [3]. The results of the influence of filling of the composite tubes with elastomers with different filling degree and various hardness on EA value are presented in table 2. The results are average values from three tests performed for each kind of the specimen. The table contains the specimens' specification: type of composite, wall thickness, filling degree, elastomers hardness, maximum load, specimens; shortening and absorbed energy (EA). The illustrations (Figs. 3-7) present the exemplary graphs of load versus displacement dependences for various kinds of specimen specifications. The graphs 8 to 10 show dependences of filling degree, hardness, wall thickness and reinforcement type (C/E, S/E) on the energy absorbed by the given specimens (EA). The specimens filled with elastomers show different crush mechanism than the specimens without filling. Tubes without the filling material crush progressively by layer bending mode while the specimens filled with elastomers crush by crack along the side surface of the tube, which is caused by the pressure of the compressed elastomer inside (see Fig. 4). Filling of the C/E and G/E composite tubes with elastomers of different hardness causes the increase in crush force (at an average of 22% for C/E), what can be concluded from the investigation results presented in tables 2 and 3 as well as in Figs. 5-7. Along with the increase in a tubes' filling degree, the tube crush displacements highly decrease, what influences directly the EA value decrease (see Figs. 5 and 6). The C/E composite tubes filled with elastomers show greater EA than the analogical tubes made of S/E composite because C/E composite compression strength is significantly greater. This effect was shown in the tests of C/E and S/E of equal wall thickness (see Fig. 10). However, the EA value was slightly influenced by the hardnesses of elastomers (40°, 60°, 70°, and 90° ShA) which filled the tubes. The influence of the tube wall thickness of polymer composites on EA is increasing for all the examined cases of a tubes filling degree and elastomer hardness. It results from the tubes crushing by the layer bending, as the bending strength depends on the thickness in square. The points presented in Figure 8 indicate the experimental results and the solid lines arose in the result of describing the points with polynomials obtained by the minimum squares method. The approximations of the dependence degree of the filling on the absorbed energy value show that EA increases to the filling degree of about 22%, however, EA significantly decreases when it is over 22%. This effect occurs due to the circumferential stresses caused by the pressure inside the tube, which are induced by the compression of incompressible elastomers.
PL
W artykule przedstawiono wyniki doświadczalnych badań wpływu prędkości uderzenia na energię absorbowaną (EA) przez kompozyty epoksydowe wzmacniane włóknami szklanymi i węglowymi o różnej strukturze. Przegląd literatury pokazał, że wpływ prędkości obciążenia na EA jest niejednoznaczny. W niektórych pracach stwierdzono, że EA nie zależy od prędkości uderzenia, natomiast w innych pracach, że EA rośnie lub maleje wraz ze wzrostem prędkości. Kompozyty polimerowe są tworzywami lepkosprężystymi, których właściwości mechaniczne (wytrzymałości na rozciąganie, ściskanie i moduły sprężystości) silnie zależą od prędkości odkształceń. Badaniom energochłonnym poddano próbki wykonane z kompozytów epoksydowych wzmocnionych matą szklaną i tkaniną szklaną o strukturze [(±45)T]n, które mają wysokie właściwości lepkosprężyste, a także kompozyty wzmocnione włóknami szklanymi i węglowymi o strukturze [(0/90)T]n, w których dominują właściwości sprężyste. Próby przeprowadzono w zakresie prędkości 0,0007-14,7 m/s.
EN
The paper presents the experimental investigations of influence of loading rate on the energy absorbed (EA) by selected polymer composites. There is a quite extensive literature examining this subject, but the obtained results do not reveal the unequivocal conclusions. In some cases, the loading rate does not influence the EA, in some cases a rising loading rate increases or decreases the EA. Due to viscoelastic properties of polymer composites, their mechanical properties (tensile strength, compression strength, elastic modulus) are strongly influenced by the loading rate. The work deals with energy absorbing tests of epoxy composites in the shape of tubes with different reinforcement orientation (different viscoelastic properties). Specimens made of epoxy resin reinforced with glass fibres in the form of fibre mats and fabrics [(±45)T]n have strong viscoelastic properties. Composite reinforced with glass and carbon fabrics [(0/90)T]n are mainly characterized by elastic properties. The energy absorbing tests were performed in the loading rate range form 0.0007 to 14.7 m/s.
PL
Przedstawiono wyniki doświadczalnych badań wpływu prędkości uderzenia na przyrost temperatury na powierzchni próbki. Podczas badań energochłonnych elementów kompozytowych następuje wzrost temperatury próbki, który jest zależny od prędkości uderzenia. Wzrost temperatury jest spowodowany tarciem cząsteczek niszczonej próbki i tarciem próbki o podporę maszyny wytrzymałościowej. W pracy [1] przeprowadzono badania dotyczące rozpraszania energii poprzez tarcie, podczas progresywnego niszczenia kompozytowych rurek, pomiędzy płytami o różnej chropowatości, natomiast nie dokonywano pomiaru temperatury próbek. W pracy podjęto próbę określenia wpływu prędkości obciążenia na temperaturę powierzchni niszczonej próbki. Przeprowadzono badania termowizyjne elementów energochłonnych, które wykonano z kompozytów polimerowych o różnym rodzaju wzmocnienia i o różnej strukturze. Badaniom dynamicznym z pomiarem temperatury poddano próbki wykonane z kompozytów epoksydowych wzmocnionych matą szklaną, które mają wysokie właściwości lepkosprężyste, a także kompozyty wzmocnione włóknami szklanymi i węglowymi o strukturze [(0/90)T]n, w których dominują właściwości sprężyste. Przy dużych prędkościach obciążenia, wzrost temperatury na powierzchni próbek był znacznie większy od temperatury mięknięcia żywicy epoksydowej.
EN
The paper presents the experimental results of loading rate influence on the temperature rise on the surface of polymer composites. The investigations showed that during the progressive crush of composite elements, the temperature of the specimen rises significantly, dependently on the loading rate. This effect is mainly caused by friction of composite molecules and friction between bended composite layers and the strength machine. In work [1], the investigations concerned the energy dissipation in progressive crush of composite tubes by a friction effect between composite material and steel plates with different surface roughness. In this case, the temperature was not measured. This work deals with the investigation of temperature growth on the surface of the composite energy absorbing elements in the shape of a tube. The dynamic tests were performed on polymer composites with different reinforcement orientation (different viscoelastic properties). Specimens made of epoxy resin reinforced with glass mat are characterized by strong viscoelastic properties. Composites reinforced with glass and carbon fabrics [(0/90)T]n have mainly elastic properties. The temperature field was measured by the infrared high speed camera. In high speed impact tests, the temperature was significantly higher than the melting temperature of the epoxy resin.
EN
In this paper, elastomers with different hardness factors were examined to evaluate the influence of the hardness on their mechanical properties. The following hardness numbers, measured in Shore A hardness scale, were investigated: 40; 60; 70 and 90°. Basic mechanical tests i.e. axial tension and axial compression have been performed in order to calculate elastic properties and stress values corresponding to the fixed strains: epsilon = 0.2; 0.3 and 0.5. The sigma (epsilon) dependences from the tension and compression tests are nonlinear and have different shapes. The tension plot can be described by a convex parabola, while the compression curve can be approximated by a concave one. dynamic load tests with loading freąuencies 0.01; 0.1; 1.0 and 3,OHz were performed in order to determine the hysteresis loop and to obtain force and displacement dependences in time. From those results the following factors were calculated: relative damping coefficient and mechanical loss angle, as well as their dependence on load frequencies. The influence of hardness on both in-phase and out-of-phase components of normal modulus were investigated. The sensitivity of the examined elastomers to the loading rate was also investigated.
EN
The works on steel -foam energy-absorbing structures for the road barrier W-beam guardrail were carried out because of the necessity of increasing the passive safety of road barriers [1-5]. A road barrier guardrail is made of steel sections. These types of sections are characterized by good strain properties, although their energy-absorbing abilities and possibilities for "softer" vehicle impact energy are unsatisfactory. In order to increase energy-absorption on the road barrier guardrail additional tin-foam sections were used. Experimental tests on the modifled road barrier guardrail were carried out on a testing machine INSTRON at the Faculty of Mechanics and Applied Informatics of the Military Academy of Technology. Two meters long W-beam guardrail was investigated in a three point bending test, perpendicularly and under the angle of 20°. As a result of the experimental research diagrams of dependence of bending force on displacement were obtained. On the basis of aforementioned diagrams the energy that was absorbed by individual road barrier elements: tin coating, foam insert and steel guardrail, was estimated. Obtained results of the experimental research were also compared with the results of the numerical simulation of the finite elements method in LS-DYNA system.
EN
This analysis considers the problem related to the transport safety improvement by applying specialized energy absorbing elements. The advanced finite element method was used to solve this problem. The obtained results permit to estimate the practical usability of the proposed solution. In previous works of the examination team [1-5] a series of numerical analysis of the car -- road barrier dynamical system, directed to the elaboration of the numerical model methodology of an impact problem with the use of chosen CAE programs, was submitted. In this article experimental results of a Suzuki Swift car impact into a standard road barrier arę presented. Tests were carried out at the Automotive Industry Institute (PIMOT) in Warsaw, with the use of a test sample of the road barrier. Presented results of experimental tests serve to validation of a numerical model of the aforementioned system. For the safety sake the car's speed during the experimental examinations was limited to 50 km/h. Moreover, the vehicle hit perpendicularly a properly modified road barrier's sector. Experimental initial boundary and constructional conditions were modelled in numerical examinations. in which a commonlv available Suzuki Swift car model, http://www.ncac.gwu.edu, was used. Numerical analysis was carried out with the use of LS-DYNA system.
PL
W pracy opisano doświadczalne badania zdolności pochłaniania energii przez kompozyty polimerowe o różnych strukturach, wzmocnionych włóknami węglowymi i szklanym. Przeanalizowano wpływ na wartość pochłaniania energii takich czynników, jak: rodzaj włókien wzmacniających, rodzaj struktury, geometria i kształty próbek, orientacja włókien w warstwie i sekwencja układania warstw. Zbadano też wpływ grubości warstw w kompozycie o różnej strukturze na zdolność pochłaniania energii.
EN
This paper presents the experimental research of the energy absorption capability of the polymer composites reinforced with carbon and glass fibres, with different structure types. The following factors were investigated: reinforcing fibre types, structure, specimen geometry and shape, fibre orientation in the plies and ply sequence. The influence of the ply thickness in the specimens with different structures on the amount of absorbed impact energy was examined.
EN
On the basis of the results obtained from our own experimental investigations of energy- absorbing elements, the influence of the given factors on absorbed energy (WEA) was determined. The objects of the research were the samples made of epoxy composites reinforced with glass fibres formed in roving, roving stripes and glass mat as well as with carbon fibres formed in roving and carbon roving stripes. To investigate the capability of hitting energy absorption of the samples in the shape of tubes, the truncate cones and in the shape of a thin cuboid were taken under consideration. The sample in the shape of tubes, wavy coats and thin cuboids with angle 45° (on one edge), play the role of the initiator of progressive destruction process. The composites matrix was taken into account during investigations: epoxy, the vinyl-esters, polyetheretherketones, reinforced with carbon and glass fibres with different structures of the samples. The influence of the sample geometry and the orientation of the layers in carbon / epoxide and the ar amid / the epoxide composites on the WEA absorption value were presented in the papers. The comparison of the structures made f rom single elements with relevant structures of four elements shows that absorbed energy is accumulating. In this case the relative absorbed energy remains at the similar level.
13
Content available remote Parameter selection rules for elements of energy-absorbing structures
EN
The paper presents the results of an experimental program and gives suggestions on the design of an energy-absorbing structure with respect to the kinetic energy of impact. The presented results account for the influence of the following factors on the energy-absorbing capability: matrix and reinforcement type, structure, shape and thickness of elements.
PL
W artykule przedstawiono wyniki doświadczalnych badań wpływu wypełnienia próbek spienionymi tworzywami na zdolność pochłaniania energii uderzenia. Próbki w kształcie rurek wykonanych z kompozytu epoksydowego wzmocnionego tkaninami węglowymi i szklanymi, wypełniano spienionym aluminium i spienionym poli(chlorkiem winylu). Wykazano, że wypełnienie rurek zwiększa pochłanianie energii, gdy grubość ścianki rurki jest większa od 2 mm oraz energia pochłaniana rurki wypełnionej jest większa od sumy energii rurki bez wypełnienia i tworzywa spienionego. Badania wypełnionych rurek o grubości ścianek 1 mm wykazały mniejszą energię absorbowaną, ponieważ niszczyły się przy mniejszej sile aniżeli rurki bez wypełnienia.
EN
This paper presents the experimental investigations of the impact energy absorption capability of the composite tubes filled with different foamed materials. Inside the tube specimens made of epoxy resin reinforced with carbon and glass fabric, aluminum foam or PVC foam cylinders were glued. It was proved that the foamed material filling increases the impact energy absorption for composite specimens with wall thickness greater than 2 mm. The value of the absorbed energy is greater than the algebraic sum of the energy absorbed by the same specimen without filling and the energy absorbed by the foamed material cylinder. It was shown that the filled specimens with a thickness of 1 mm absorbed less impact energy than the specimens without filling, because the mean crush load was clearly lower.
EN
This paper presents experimental investigations of mechanical properties of materials used in the absorbing energy structures. Numerous experimental investigations are essential to develop a reliable numerical model of composite structures absorbing the impact energy. This model should correctly describe the dissipation of kinetic impact energy in the progressive crush process. Mechanical properties of composite materials like elastic modulus, strength, failure strains with influence of anisotropic properties are obtained experimentally. Different strength hypotheses are used for fibrous composites. The investigations on the complex stress state allow determining which of these theories describes the composite best. It was proved that both the matrix type and the structure of the composite have a very large influence on the SEA (Specific Energy Absorption), in particular on their crack propagation resistance. The dependence between the energy absorbed by a single energy absorbing element and a fragment of the structure absorbing the impact energy was discussed. Friction forces play the important role in the progressive crush of composites and they should be taken into account in developing a valid numerical model. Some authors state that the friction forces absorb 40% of the impact energy. The influence of failure strain rates on the absorbing energy capability, which is not clearly defined in the literature about composite structures, was also discussed.
PL
W pracy opisano badania dotyczące określenia zdolności pochłaniania energii podczas uderzenia, przez elementy energochłonne wybranych kształtów. Badano wpływ kształtu elementów energochłonnych takich jak: cienkie płaskie o przekroju prostokątnym, rurki o przekroju pierścieniowym, ścięte stożki o różnych kątach wierzchołkowych, powłoki faliste i w kształcie sfer na wielkość energii absorbowanej (EA). Natomiast, na podstawie prac opublikowanych w literaturze przedstawiono wpływ kształtu słupków o przekroju ceowym i kątowym, rurek o przekroju kwadratowym, eliptycznym oraz rurek z pofalowaną ścianką na EA. Przedmiotem badań były próbki wykonane z kompozytów epoksydowych (żywica E-53) wzmocnionych włóknami szklanymi w postaci: tkaniny rowingowej marki STR-012-350-110, pasmami rowingu marki ES-10-400-0-60 i matą szklaną oraz włóknami węglowymi w postaci: tkaniny rowingowej marki TENAX HTA 5131. Badania doświadczalne prowadzono na standardowej maszynie wytrzymałościowej INSTRON 8802, przy prędkości obciążenia (prędkości trawersy maszyny) równej 40 mm/min. Wyniki badań przedstawiono w tabelach jako zależność siły niszczącej od odkształcenia (skrócenia próbki). Podano podstawowe właściwości próbek takie jak: wymiary geometryczne, masową zawartość włókien, masę, maksymalną i średnią siłę niszczącą, zaabsorbowaną energię oraz względną energię absorbowaną WEA, tj. energię odniesioną do masy. Zależności WEA od kształtu elementu, dla elementów wykonanych z tych samych kompozytów o jednakowej strukturze zestawiono na wykresach. Liczne fotografie próbek o różnych kształtach przed, w trakcie i po procesie niszczenia ilustrują różne mechanizmy niszczenia.
EN
Research on determining an energy absorption capacity of energy-absorbing elements of selected shapes during the impact is described in this paper. The influence of a shape of energyabsorbing elements of such shapes as thin plates of rectangular cross-section, cylindrical tubes, conical tubes with different apex angles, wavy plates, and semi-spheres on a value of the absorbed energy was examined. Additionally, on the basis of on the information available in literature, influence of other elements such as U-channel and angle bars, square and elliptical tubes, and wavy-walled tubes was described. The specimens made from epoxy composites (E-53 resin) were tested. A structure of the composites was reinforced with glass fibers in the form of STR-012-350-110 rowing fabric, ES-10-400-0-60 rowing wisps and glass mat, as well as carbon fibers in the form of TENAX HTA 5131 rowing fabric. Experimental tests were conducted on universal testing machine INSTRON 8802 at a constant crosshead displacement rate of 40 mm per minute. The test results were presented as compressive force vs. displacement (specimen shortening). The basic properties of the specimens, including their geometrical dimensions, mass fiber contents, weights, maximum and average values of compression force, absorbed energy, and relative absorbing energy related to specimen weight, were provided in tables. The relations between relative absorbing energy and composite structures for the specimens made from composites of the same structure were compared in the form of graphs. Numerous photographs, taken during the compression test, as well as before and after it, indicate different failure mechanisms for each of the specimens.
PL
W pracy opisano wyniki badań wpływu inicjatora niszczenia elementów energochłonnych zastosowanych na rdzenie konstrukcji przekładkowych na zdolność pochłaniania energii uderzenia. Wykazano, że inicjatory zapewniają niszczenie progresywne elementu podczas ściskania, co wpływa na wartość pochłanianej energii. Przedstawiono różne rodzaje inicjatorów dla różnych kształtów elementów oraz określono, że elementy w postaci sfer, konstrukcji przekładkowej i stożków ściętych o kącie wierzchołkowym większym od 20° nie wymagają inicjatora niszczenia.
EN
The paper presents experimental results of the crush initiator influence on the energy absorption capability in the energy absorbing elements used in sandwich structure cores. It was proved, in the carried out compression tests, that crush initiators assure progressive crush which affects the absorbed energy. Many kinds of initiators with different shapes of elements were investigated. It was found that spherical elements, sandwich structures, and truncated cones with the vertex angle greater than 20° require no crush initiators.
PL
W pracy opisano doświadczalne badania zdolności pochałaniania energii przez elementy energochłonne w kształcie rurek, wykonane z kompozytów o osnowie epoksydowej (E-53) i winyloestrowej (VE-2MM) wzmocnionych włóknami węglowymi i szklanymi. Podano wyniki badań właściwości mechanicznych żywic winyloestrowej i epoksydowej oraz kompozytów ortotropowych o osnowie VE i E wzmocnionych tkaninami węglowymi i szklanymi, z których wykonano próbki. Podano także wyniki badań wpływu rodzaju włókien oraz osnowy na zdolność pochłaniania energii. Badania doświadczalne prowadzono na standatdowej maszynie wytrzymałościowej ISTRON 8802, przy prędkości obciążenia (prędkości trawersy maszyny) równej 40 mm/min. Wyniki badań przedstawiono w postaci zależności siły niszczącej od odkształcenia (skrócenia próbki) oraz tabel, w których zawarto właściwości mechaniczne kompozytów. Zależności względnej energii absorbowanej WEA od struktury kompozytu dla elementów z kompozytów o takim samym wzmocnieniu i jednakowej strukturze dla żywic VE i E zestawiono na wykresach. Przedsyawione fotografie próbek ilustrują mechanizmy niszczenia badanych elementów energochłonnych. Na podstawie wyników badań próbek w kształcie rurek wykonanych z kompozytów szkło/epoksyd i węgiel/epoksyd oraz szkło/winyloester i węgiel/winyloester można stwierdzić, że największą WEA mają próbki wykonane z kompozytu winyloestrowego wzmocnionego włóknami węglowymi, których warstwy zewnętrzne i wewnętrzne są wykonane z rowingowych tkanin przejmujących naprężenia obwodowe, natomiast warstwy wewnętrzne - z włóknami ułożonymi równolegle do osi próbki, zwiększającymi wytrzymałość na zginanie. Wysoką zdolność pochłaniania energii wykazał kompozyt wzmocniony matą szklaną. Próbki wykonane z kompozytów o osnowie winyloestrowej wykazały WEA wyższą od próbek z żywicą epoksydową, średnio o 13% dla próbek wzmocnionych włóknami szklanymi i o 21% dla próbek wzmocnionych włóknami węglowymi.
EN
Experimental investigations of energy absorption capacity of carbon and glass fiber-reinforced epoxy (E-53) and vinylester (VE-2MM) composite tubes were presented in this paper. Mechanical properties of vinylester and epoxy resins as well as vinylester and epoxy orthotropic composites reinforced with carbon and glass fabric were researched. In addition the influence of the sort of fibre and matrix on the energy absorption capacity was investigated. Experimental tests were conducted on universal testing machine INSTRON 8802 at a constant crosshead displacement rate of 40 milimeters per minute. The results of the experimental tests for specimens were depicted in the relation of compressive force-displacement whereas the mechanical absorbing energy and composite structures for specimens made from composites with the same reinforcement and equal structure for both vinylester and epoxy resin were compared in the form of graphs. Failure mechanism of tested specimens were shown in photographs. Based on the obtained results for the carbon/epoxy and glass/epoxy as well as for carbon/vinylester composite tubes, it was concluded that specimens made from carbon fiber-reinforced vinylester composite have the highest relative absorbing energy. It was caused by resistance of inner and outer layers of rowing fabric to circumferential stress and by increased bending strength of inner layer of fibers parallel to the specimen axis. The glass mat reinforced composite was also characterized by the high energy absorption capaxity. The specimens made from vinylester composites have better relative absorbing energy than those made from epoxy, approximately 13% and 21% greater for glass and carbon reinforced specimens, respectively.
PL
W pracy opisano badania eksperymentalne konstrukcji energochłonnych. Dokonano porównania wyników zdolności pochłaniania energii uderzenia struktur typu sandwicz z wypełnieniem z tworzywa spienionego oraz cienkościennych konstrukcji energochłonnych z rdzeniem z powłoki falistej. Wykonano próbki z użyciem kompozytu epoksydowego wzmocnionego matą szklaną, tkaniną szklaną i tkaniną węglową. Struktury faliste ze wzmocnieniem włóknami węglowymi wykazały najwyższą wartość względnej energii absorpcji.
EN
The work presents experimental studies of energy absorbing structures. The presented investigation covers absorbing impact energy capability results of sandwich structures with a core made of composite plates filled with foamed material (PVC) and composite thin-walled waved constructions. The specimens were made of glass mat, glass fabric, and carbon fabric reinforced with epoxy resin. The waved thin-walled energy absorbing structures reinforced with carbon fabric proved to be the best.
PL
W pracy przedstawiono analizę energochłonnych konstrukcji, których struktura oparta jest na: rurkach, stożkach, warstwach falistych, kształtownikach o różnych przekrojach i powłokach przekładkowych z rdzeniem w postaci plastra miodu lub z tworzywa spienionego. Podano wpływ struktury i rodzaju kompozytów na zdolność pochłaniania energii.
EN
In the paper, there was presented analysis of energy-consuming structures, which were composed of tubes, cones, wavy layers, sections and separator shells with honeycomb core or foams. There was shown influence of the structure and kind of composite on energy absorption ability.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.