Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Combustion processes are considered to be the main source of the dioxin emission in the Baltic region. Pentachlorophenol (PCP) and its derivatives, pentachlorophenyl laurate (PCPL) and sodium pentachlorophenate (NaPCP) are known as precursors of dioxins. The research was conducted to obtain the first data on the concentration of PCDD/Fs and PCP in the bottom sediments of the Port of Gdansk. Toxicity (the Microtox® test) as well as several sediment parameters have been examined. In the surface layer of bottom sediments from the Port of Gdansk, all congeners of PCDD/Fs have been detected using GC-MS/MS. The highest concentration was obtained for OCDD (224.0–271.0 pg g−1 d.w.) and HpCDD (51.0–36.0 pg g−1 d.w.). The content of ΣPCDDs prevailed over ΣPCDFs. This may indicate that anthropogenic pollution from the land-based thermal sources has the strongest impact on the concentration of dioxins in the port sediments. The concentration of 17 dioxin congeners (WHO-TEQ) did not exceed the probable effect level (PEL) of 21.5 pg TEQ g−1 d.w. The concentration of PCP ranged from bellow the LOD (< 0.85 ng g−1 d.w.) to 12.4 ng g−1 d.w. The positive correlation between toxicity and physico-chemical properties of the analyzed bottom sediments confirms that these parameters are important in terms of environment contamination.
EN
Toxicity assessment of environmental compartments, in particular sediments as a highly complex matrix, provides a more direct way to assess potential adverse effects of pollutants present in a sample in contrast to chemical analysis estimating only a quantitative level of xenobiotics. Interactions between chemicals, formations of derivatives and the influence of chemical properties of sediments such as the organic matter content causing the intensified sorption of hydrophobic pollutants suggest that a traditional approach to the sediment quality, based only on chemical analysis may be insufficient. The presented study describes the vertical and horizontal variability of toxicity of Gdańsk Basin sediments. Based on 128 surface sediments samples and using geostatistical methods, a prediction map for the EC50 parameter was created. This allowed the evaluation of the toxicity of the surface sediment layer at any selected point of the study area. The applied analysis can be functional for many other locations worldwide. In the present study, the hypothesis about the location of toxic sediments in the vicinity of Gdańsk Deep, outer Puck Bay and close to Vistula River mouth was further confirmed.
EN
Pentachlorophenol (PCP) and its derivatives are considered to be the precursors of dioxins, thus their concentrations in environmental compartments remain relatively correlated. Unlimited production and usage of PCP in recent decades may have posed a potential ecological threat to marine ecosystems due to uncontrolled discharge of this contaminant into the Vistula River and finally into the Gulf of Gdańsk. Since there are no data on PCP concentration in sediments of the southern part of the Baltic Sea, the level of contamination has been examined and possible influence of sediment properties in the Gulf of Gdańsk on the accumulation intensification has been investigated. The study has resulted in the evaluation of an efficient analytical procedure characterized by a low detection limit (LOD<1 ng g−1 d.w.). Instrumental analyses have been supplemented with Microtox® bioassay in order to assess the sediment toxicity. The obtained concentrations in collected samples varied from below the LOD in sandy sediments to 179.31 ng g−1 d.w. in silty sediments, exceeding the PNEC value of 25 ng g−1 d.w. (Predicted No Effect Concentration) estimated for the Baltic Sea (Muir & Eduljee 1999). It has been proven that properties of sediments from the Gulf of Gdańsk, including pH, Eh of bottom water, the content of water and organic matter, affect the rate of PCP accumulation. High toxicity has been recorded in the bottom sediments of the Gdańsk Deep but no statistically significant correlation between PCP concentration and the sediment toxicity has been observed. Analysis of PCP concentration distribution in sediment cores revealed that the surface layer is the most polluted one, which indicates a continuous inflow of PCP from the Vistula River. Horizontal PCP distribution in the sediment from the Gdańsk Deep reveals variability similar to that observed for highly chlorinated dioxins (Niemirycz & Jankowska 2011).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.