We study the dynamics of a meromorphic perturbation of the family λsinz by adding a pole at zero and a parameter μ , that is, fλ,μ(z)=λsinz+μ/z , where λ,μ∈C⧹{0} . We study some geometrical properties of fλ,μ and prove that the imaginary axis is invariant under fn and belongs to the Julia set when ∣λ∣≥1 . We give a set of parameters (λ,μ) , such that the Fatou set of fλ,μ has two super-attracting domains. If λ=1 and μ∈(0,2) , the Fatou set of f1,μ has two attracting domains. Also, we give parameters λ,μ such that ±π/2 are fixed points of fλ,μ and the Fatou set of fλ,μ contains attracting domains, parabolic domains, and Siegel discs, we present examples of these domains. This paper closes with an example of fλ,μ , where the Fatou set contains two types of domains, for λ,μ given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.