In this article, we study the following nonlinear k-Hessian system with singular weights [formula], where 𝜆 >0 , 1 ≤𝑘 ≤𝑁 is an integer, Ω stands for the open unit ball in ℝ𝑁 , and 𝑆𝑘(𝜎(𝐷2𝑢)) is the k-Hessian operator of u. By using the fixed point index theory, we prove the existence and nonexistence of negative k-convex radial solutions. Furthermore, we establish the multiplicity result of negative k-convex radial solutions based on a priori estimate achieved. More precisely, there exists a constant 𝜆∗ >0 such that the system admits at least two negative k-convex radial solutions for 𝜆 ∈(0,𝜆∗).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.