Background: Acute ankle sprain may affect ankle function during sport and daily activities. This study aimed to use vector coding technique to analyze the difference over time between injured and healthy lower limb during the first week of acute ankle sprain phase (P1) and post a 1-month recovery phase (P2) to understand the return-to-play coordination strategy in the lower extremity. Methods: Six females attended the gait experiments with attached 40 reflective markers using eight camera Vicon motion capture system. All participants walked barefoot while turning in four directions (T0°, T45°, T90°, T135°) at their self-selected speed. Coordination patterns were classified as in-phase, anti-phase, proximal or distal dominancy between lower limb joints involving hip, knee, ankle, subtalar, metatarsophalangeal (MTP) joint and tarsometatarsal (TMT) joint. Results: P1 showed more proximal joint dominant in Hip-Knee coupling angles but P2 displayed more distal joint dominant in Knee-Ankle joint coordination pattern and mainly distal joint dominant in Ankle-MTP coupling angle mapping. The Ankle-TMT1 and Ankle-TMT5 coordination patterns matched best in straight walking but worst in T135 walking. Conclusions: Investigating inter-segmental coordination in different turning movements could provide insights into gait changes from acute ankle sprain from one-month return-to-play recovery. Knowledge of lower limb coordination pattern may provide clinical implications to improve dynamic balance and gait stability for individuals with acute ankle sprain.
Foot pronation is not an isolated factor influencing lower limb functions. Exploring gait variability and impact loading associated with the foot posture are crucial for understanding foot pronation-related injury mechanisms. This study aimed to evaluate how foot posture affects impact loading and running variability during running. Methods: Twenty-five male participants were recruited into this study. Pressure under the foot arch, acceleration and marker trajectory were recorded in the right limb for each runner after 1, 4, 7 and 10 km running, respectively. Linear mixed effects models were used to analyze the statistical difference of the data. Results: FPI-6 has significantly increased after the 10 km running ( p < 0.01). For the tibial acceleration, peak resultant acceleration after 10 km running was significantly increased than after 4 km running ( p = 0.02). At the dorsum of the foot, the short-time largest Lyapunov exponent (LyE) after 10 km running decreased 0.28 bit/s compared with LyE after 7 km running ( p = 0.03). In the tibia, LyE after 4 km and 10 km running was decreased significantly ( p < 0.01 and p = 0.01). Conclusions: The foot was significantly pronated at the middle and at the end of running. Foot pronation during distance running increased the distal tibia peak impact acceleration but did not increase running instability.
The aim of this study was to investigate the differences in ankle joint parameters of biomechanics changes between the normal shoes (NS) and the bionic shoes (BS) during the running stance phases. Methods: A total of 40 Chinese male runners from Ningbo University were recruited for this study (age: 22.3 ± 3.01 years; height: 174.67 ± 7.11 cm; body weight (BW): 66.83 ± 9.91 kg). The participants were asked to perform a running task. Statistical parametric mapping (SPM) analysis was used to investigate any differences between NS and BS during the running stance phases. The principal component analysis (PCA) and support vector machine (SVM) were used to further explore the differences of the muscle force between the BS and NS. Results: Significant differences ( p < 0.05) were found in the first metatarsophalangeal joint (MPJ1), ground reaction force (GRF), ankle joint and around muscle forces. Furthermore, the accuracy of SVM model in identifying the gait muscle force between BS and NS reached 100%, which proved that the BS had a very large impact on the gait muscle force compared with NS. Conclusions: We found that BS may be better suited to the human condition than other unstable shoes, or even NS. In addition, our results suggest that BS play an important role in reducing ankle injuries during running by increasing muscle participation in unstable conditions while better restoring the most primitive instability of foot condition that humans have.
Purpose: The purpose of this study was to evaluate kinematic variables at 5 running speeds (8 to 12 km/h), for the asymmetry between lower limbs. We also investigated the effects of running speed on the bilateral asymmetry of the lower limb joints kinematic variables among novice runners. Methods: Kinematic (200 Hz) running data were collected bilaterally for 17 healthy male novice runners (age: 23.1 ± 1.3 years, height: 1.77 ± 0.04 m, mass: 72.3 ± 4.57 kg, BMI: 23.1 ± 1.0 kg/m2) running on a treadmill at 5 fixed speeds (8, 9, 10, 11 and 12 km/h) in a randomized order. Symmetry angles (SA) were calculated to quantify gait asymmetry magnitude at each running speed. Results: Overall, SPM analysis using paired t-tests revealed significant joints kinematic differences between the left lower limb and the right lower limb at each running speed. Significant differences between limbs were found for all joint kinematic variables in the ankle and hip, regardless of running speed. As for the knee angle, significant differences between legs were only found during the running speed of 11 km/h. For knee angle velocity, significant differences between legs were found in all running speeds except for 8 km/h. However, there was no noticeable difference in asymmetry values across running speeds. Conclusions: The findings of the current study indicate that gait asymmetry of joint kinematics variables between lower limbs during running is apparent in healthy novice runners. Meanwhile, running speed does not influence lower limb joints kinematic asymmetry among novice runners.
Purpose: Long-distance running has been a global popularity, and differences may be observed in runners of experience. This study was aimed to evaluate the differences in plantar loading between experienced long-distance runners and novice runners during walking. The hypotheses were that smaller load in the middle of the forefoot and the stable foot balance would be observed in experienced runners during walking. Methods: Twenty-five participants were recruited as the experienced runners group (ten: frequency ≥ 4 times/week and distance ≥ 40 km/week, for over 1 year) and the novice group (fifteen: frequency ≤ 2 times/week and distance ≤ 10 km/week, for less than 1 year). Results: The peak Meta loading showed that the novice runners were significantly larger than the experienced runners ( p ≤ .001). The occurring time of peak Meta loading was significantly delayed compared to the experienced runners ( p = .050). Peak Foot balance was higher in the novice runners group ( p ≤ 0.001). Conclusions: This study highlighted the findings of the potential differences of plantar pressures and foot functional parameters during walking in experienced runners and novice runners, specifically the contact duration of phases during stance, toes functions and medial-lateral loading shifting (foot balance) and metatarsals (central forefoot) offloading.
Unplanned gait termination (UGT) widely occurs in various sports and daily life as a kind of stress response to unexpected stimulus. However, the body stability may be greatly affected when the body completely stops. The purpose of this study was to examine the association between muscle strength levels and body stability during UGT through comparing the plantar pressure. Methods: Twenty healthy participants (10 male and 10 female) with different lower limbs muscle strength and power were asked to perform planned gait termination (PGT) and unplanned gait termination (UGT) on an 8-m walkway. Related plantar pressure data including maximum pressure, maximum force, contact area and center of pressure were recorded with Footscan pressure platform. Results: Two types of gait termination have significant differences in the plantar pressure distribution. Maximum pressure and maximum force in the lateral metatarsal increased significantly during UGT, compared to PGT. At the same time, data from the current study suggested that there might be a correlation between the muscle strength levels of individual and the stability during the gait termination, especially between the muscle power and UGT, which means that the more excellent muscle power an individual has, the more stable the body is when UGT is performed. Conclusions: The findings suggest that different muscle strength levels could affect stability during unplanned gait termination.
Functional footwear with different unstable profiles has been widely used to mimic barefoot condition and offload plantar loading for pathological or injury prevention. However, little research investigates the effect of unstable structure on particular foot functions. In this study, a prototype of unstable shoe design with unstable element of different stiffness placed at the hallux (a regionalized rocker) was used. The primary objective was to analyse the biomechanical performance of running with hallux unstable shoes, aiming to potentially stimulate and increase the toe gripping function. Methods: The lower limb kinematics and plantar pressure distribution were measured to comparatively analyse the soft (SS) and hard (SH) unstable shoes with flat control shoes (CS). Results: The SS showed increased big toe and reduced forefoot plantar pressure. The SS led to similar lower limb kinematics to baseline CS except for reduced hip abduction, increased rotation range of motion (ROM), increased peak ankle plantar flexion and ROM. The SH presented significantly altered lower limb kinematics across hip, knee and ankle, and laterally distributed plantar pressure. Conclusions: Unstable shoes with soft material led to reduced medial metatarsal loading by increasing the support area and modified joint kinematics minimally. Unstable shoes with stiffer material presented compensatory kinematic movements across all joints and laterally shifted plantar loading distribution. These findings may provide implications on toe grip function training for foot pressure off-loading.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.