Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The parameters of neutron emission from the neck of the condensed Z-pinch, were measured at an S-300 installation (2 MA, 100 ns). Profiled loads with central parts made from microporous deuterated polyethylene (with a density of 100 mg/cm3) were used in the experiments. Neutron emission parameters were measured by the time-of-flight (TOF) method. Neutrons were registered using four flight bases with 10 scintillation detectors which were placed at two axial and two radial directions. It was found that the mean neutron energy, determined by the TOF method, turned out to be anisotropic. The average energy of neutrons emitted along the axis towards the cathode, was shifted to higher energy (2.6-2.8 MeV) and the average energy of neutrons emitted towards the anode, was shifted to lower energy (2.1-2.3 MeV) compared to the d-d reaction neutron energy 2.45 MeV. The average energy of neutrons, emitted in two opposite radial directions, was close to 2.45 MeV. The half-width of the energy distributions reconstructed for all directions was 400-500 keV. The analysis of the experimental results demonstrated that the found phenomena could be explained by a slowly decaying high energy tail in the energy distribution of colliding deuterons. The maximal neutron yield was of 6 x 109.
EN
In the report the dynamics of the Toroidal Plasmoids formation in a Cavity of the Neck (TPCN) of plasma columns and tubes is described. The study was carried out within the MHD (magnetohydrodynamics) frames and by using the particles method. It was shown that in the fast forming neck of plasma pinch, some observed orthogonal to the current structures could be H-filaments (at the equilibrium state they are θ-pinches). These filaments are supported due to the interaction of the induced (secondary) current with magnetic field of the Z-pinch.
EN
The paper considers the Z-pinch as the basis for future thermonuclear fusion reactors. Experiments on Z-pinches always concern small and high temperature and a high density plasma regions that arise spontaneously in the Z-pinch neck. A burn wave might be initiated in the Z-pinch column if in this small plasma region a Lawson-like condition is fulfilled.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.