Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
For the prevention and control of rockburst in underground coal mines, a detailed assessment of a rockburst hazard area is crucial. In this study, the dependence between stress and elastic wave velocity of axially-loaded coal and rock samples was tested in a laboratory. The results show that P-wave velocity in coal and rock is positively related to axial stress and can be expressed by a power function. The relationship showed that high stress and a potential rockburst area in coal mines can be determined by the elastic wave velocity anomaly assessment with passive seismic velocity tomography. The principle and implementation procedure of passive seismic velocity tomography for elastic wave velocity were introduced, and the assessment model of rockburst hazard using elastic wave velocity anomaly was built. A case study of a deep longwall panel affected by rockbursts was introduced to demonstrate the effectiveness of tomography. The rockburst prediction results by passive velocity tomography closely match the dynamic phenomenon in the field, which indicates the feasibility of elastic wave velocity anomaly for rockburst hazard prediction in coal mines.
EN
To study the effect of fracture morphology and in situ stress on the seepage behavior of rough fractures, hydraulic–mechanical experiments with different confining stresses, pore pressures and fracture geometry were carried out. The dimensionless parameter non-Darcy coefficient factor K and K-based critical Reynolds number model (KCRN) was proposed to characterize the behavior of rough-wall fracture and fluid seepage. The results show that the seepage flow of rough-wall fracture can be well described by Forchheimer equation. As the confining pressure increases from 1 to 31 MPa, the two walls of the rough fracture are compressed, and the fluid flow capacity is weakened, resulting in an increase of 2–3 orders of magnitude in Forchheimer viscosity coefficient A. Also affected by the increase in the confining pressure, the contact area between the two walls of the rough fracture increases, which makes the fluid channel become curved, increases the dissipation of water pressure in the inertial process and causes the inertial term coefficient B to increase by 2–3 orders of magnitude in general. In the whole range of test confining pressure (1 MPa–31 MPa), the flow state of rough fracture fluid is divided into zones based on the critical Reynolds number. The average hydraulic aperture decreases with the increase in the confining pressure, which can be perfectly fitted by hyperbolic function. The calculated critical Reynolds number of six rough fracture samples varies from 0.0196 to 1.0424. According to the experimental data, the K-based critical Reynolds number model (KCRN) is validated, and the validation results prove the accuracy and reliability of the model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.