Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Numeryczny model zespołow urbanistycznych w Krakowie
EN
The paper presents experience of the Spatial Planning Office at the Cracow City Hall connected with acquisition of data for elaboration of spatial development plans in the city. In drawing up these plans various data are used and information about height of existing objects is of crucial importance. Over the course of the years more and more advanced tools for building digital models were used for visualization of urban complexes for planning purposes. These were in turn models based on: 1) land and buildings register . these models could be only treated as an approximation, because land and buildings registration does not provide information about their height; 2) stereoscopic elaboration of aerial photos - featured with high accuracy, but the obstacle was the need to have specialized photogrammetric equipment and software and trained personnel with inborn ability to view stereoscopic images and relatively high labour-intensity; 3) aerial laser scanning (defined as LIDAR or ALS). In 2004, first laser scanning was made for Grunwaldzkie Roundabout and Wawel Castle by means of a TopEye MkII scanner mounted on a helicopter (an area of over 2 sq km, average height of the flight 300 meters above the terrain at a speed of 45 km per hour). 3.7 million points were registered which gave an average density of 1.5 point per sq m. These data were well suited for building a digital model of urban complexes. In 2006, laser scanning was performed for the whole area of Cracow by means of FLI-MAP 400 system installed on a helicopter (the height of flight 350 meters). A cloud of points with average density of at least 12 points per sq m was obtained. Such a density enables visualization not only of urban complexes but of individual objects, including determination of their height. The results obtained confirm usefulness of aerial laser scanning as the technique of data acquisition for creation of digital models of urban complexes with high accuracy and in great detail.
2
Content available Lotnicze skanowanie laserowe Krakowa
PL
Pozyskanie informacji wysokościowej o istniejących elementach pokrycia terenu, a także o samym terenie jest obecnie czymś oczywistym. Dane te są wręcz niezbędne do właściwego wypełniania zadań samorządu, szczególnie w planowaniu przestrzennym i architekturze, a także w wielu innych dziedzinach. Wiele miast zdecydowało sie na tworzenie trójwymiarowych modeli. Wybrane technologie są różne. W Warszawie wskazano na tworzenie trójwymiarowego modelu miasta na podstawie zdjęć lotniczych. Biuro Planowania Przestrzennego Urzędu Miasta Krakowa zdecydowało sie pozyskać informacje wysokościowe za pomocą lotniczego skanowania laserowego (znanego pod nazwa LIDAR lub ALS). Referat przybliży efekty lotniczego skanowania laserowego Krakowa.
EN
Nowadays, gathering information about existing element’s heights and the terrain itself is obvious. This data is essential to perform a number of tasks dealt with by the public administration, especially in the spatial planning, architecture and other fields. Many cities have decided to create spatial models (3D). The techniques of choice vary from one place to another. In Warsaw, urban spatial model is composed of aerial photographs. The Spatial Planning Office Municipality of Krakow decided to gather spatial information by airborne scanning (called LIDAR or ASL). This lecture gives an overview of airborne scanning of Krakow.
3
Content available remote Wykrywanie budynków na podstawie lotniczego skanowania laserowego
EN
This paper discusses automatic detection of buildings from airborne laser scanner data. Beside introduction and conclusions there are three main parts in this paper. In part one basic technical parameters of airborne laser scanning are reminded. Part two presents literature review of various methods that have been applied in the detection and modeling of buildings. Part three describes a research experiment carried out by the authors. This part includes a comparison between two methods of detection: the one offered by specialist software and the alternative method proposed by the authors of this paper. The technique of laser scanning, often referred to as LIDAR, continues to develop very dynamically. It is characterized by a high level of efficiency and accuracy. It is most often used to create 3D models of cities. Until now, LIDAR was mostly used in national studies to determine digital terrain models (DTM), which is done by separating certain points (those which result from laser reflections of trees, buildings and other above-ground surfaces) from disorganized .clouds of points.. Meanwhile, the most useful contribution of this technique is that it enables numeric calculation of the digital surface model (DSM). The authors. experiment attempted to analyze the effectiveness of automatic detection of buildings using two different methods. The first method used original data and applied specialist software which detects and models buildings. In the second, the .cloud of points. was replaced by a regular grid, which had been determined through interpolation. Then, using the typical tool of GIS, the authors carried out a series of experiments. In this paper, the authors present their concept of detection of buildings. This concept is based on an analysis of three surface layers: map of heights, map of slopes and map of texture. The final stage consisted of spatial analysis which showed all the places which meet certain conditions that are adequate for buildings, such as heights, slopes and texture. The methods were implemented on two test areas. One area contained independently standing apartment buildings in which the sides and rooftops of buildings were perpendicular and at right angles to each other. The second test area was made up of various buildings of differentiated heights with steep, multidirectional roofs. For both these areas, reference data was obtained through the vectorization of photogrammetric stereoscopic models. Both methods of detection showed comparable effectiveness. The method using .cloud of points. and specialist software showed slightly straighter roof edges, however a slightly worse balance of surface in relation to the reference data, than the method based on GIS analyses which presents the authors. concepts of detections of buildings. However, the differences were negligible and both methods had a similar level of effectiveness in the detection of buildings: approximately 90% for the easy area and about 60% for difficult area. These results are similar to those presented in literature. During the study, all cases in which detection of buildings was ineffective were also analyzed. Tall trees rising above rooftops often presented a significant obstacle. Moreover, the scanning data contained several places, where LIDAR provided measurements with very low density, much smaller than the average density of 1,5 points per m2. These .holes. lowered the effectiveness of the first method. However, the weakness of the raster method was weak representation of the grid in places where trees were located as the applied interpolation smoothed out the original data. The results of this research lead to the conclusion that an optimal method would entail a .combined. approach. First, the raster analysis should be applied to determine the probable location of buildings. Then, for certain atypical spaces one should return to the source data (cloud of points) and vertically assign cross sections in predefined directions. What is still needed is a method of automatic recognition of buildings on the basis of cross sections as well as dimensions of buildings which aim to obtain a 3D model. This paper confirms a huge potential of the laser scanning technique to create 3D models. The proposed method of detection of buildings proved promising and it can be applied even without expensive specialized software.
PL
Celem prezentowanej pracy było ustalenie wpływu rodzaju modelu terenu na jakość ortorektyfikacji wysokorozdzielczych obrazów satelitarnych IKONOS-2. Przedmiotem ortorektyfikacji były dwie sceny satelitarne IKONOS-2 pozyskane w dniu 25.06.2005 r. Dwa z wykorzystanych modeli wysokościowych opracowano na podstawie stereoskopowych zdjęć lotniczych w skalach odpowiednio: 1:13 000 i 1:26 000. Trzeci model powstał na drodze wektoryzacji warstwic z map topograficznych 1:50 000. Wszystkie modele miały postać regularnej siatki o bokach, odpowiednio: 15 m, 20 m oraz 30 m. W procesie ortorektyfikacji użyto oprogramowania OrthoWarp ER (Inpho Technology). Do ortorektyfikacji użyto tych samych GCP dla wszystkich modeli dla kanału PAN, sceny wschodniej (16 GCP) i zachodniej (15 GCP). Błąd średni kwadratowy (RMS) lokalizacji współrzędnych XY oscylował w przypadku obrazu ORTO_15 poniżej 2.0 m (dla sceny West: 1.75 m; East: 2.16 m). Kolejne testowane NMT (20_DEM oraz 30_DEM) spowodowały nieznaczne pogorszenie dokładności lokalizacji, co przejawiło się wzrostem wartości RMS do 2.37 m w obydwu wypadkach. Scena wschodnia o mniejszym odchyleniu kątowym od nadiru (8.1) niż zachodnia (13.1) wykazywała nieznacznie większy błąd (około 0.41 m dla ORTO_15 oraz 0.26 m dla ORTO_30). Przetworzone do postaci ortoobrazów sceny IKONOS-2 całkowicie spełniły oczekiwania projektu jako podkład do kartowania roślinności w każdym z analizowanych przypadków stosowania różnych NMT.
EN
The aim of the study was to define the influence of different types of Digital Elevation Models (DEMs) on the quality of the orthorectification process of very high resolution satellite (VHRS) IKONOS-2 images used in the “Mapping of the vegetation of the City of Cracow”. project The subject of the orthorectification were two satellite scenes (west and east of Cracow) of IKONOS-2 obtained on 25/06/2005. For the needs of orthorectification, three different digital elevation models were used. Two of them were made based on stereoscopic air-borne photographs on the respective scales of 1:13 000 and 1:26 000. They were prepared to generate air-borne orthophotomaps. The third model was made by digitizing contour lines from 1:50 000 topographical maps. All the models came to formed a regular grid with the sides: 15 m (15_DEM), 20 m (20_DEM) and 30 m (30_DEM), respectively. Data from the IKONOS-2 scanner was delivered on the processing level of a Standard Geometrically Corrected type (known as Geo-Ortho ready) with the application of the Cubic Convolution (WGS84, UTM34N; PAN 0.8 m; MS 3.2 m) interpolation method. The accuracy (RMS XY) of the obtained raw data was about 12.4 m for scene west and 9.5 m for east scene (max. 34 metres for the summit of the Marshall Piłsudski Mound). In the process of the orthorectification, OrthoWarp ER (Inpho Technology) software was used. The same GCP for all models for the PAN band for the eastern (16 GCP) and western (15 GCP) scenes were used in the orthorectification process. The mean square error (RMS) of the location of co-ordinates XY was in ORTO_15 (based on the 15_DEM) result image below 2.0 metres (for scene west – 1.75 m; east – 2.16 m). Subsequently tested 20_DEM and 30_DEM caused slight deterioration of the location accuracy, when RMS grew to 2.37 m in both cases. The eastern scene of smaller angular declination of a scanner from the nadir (8.1°) than the western one (13.1°) showed slightly greater bias (additionally about 0.41 m for ORTO_15 and 0.26 m for ORTO_30). Processed into the form of orthoimages, the VHRS IKONOS-2 scenes fully met the expectations of the project as a basis for mapping the vegetation in each of the analysed cases of the application of different DEM. The comparison of the application of different types of digital elevation models of different characteristics in the process of generating satellite orthoimages confirmed the usefulness of the application of already publicly available DEM.
PL
Parki narodowe są najwyższą formą wielkoobszarowych obiektów ochrony przyrody. W ich granicach zostały ujęte ekosystemy o szczególnych walorach przyrodniczych. Tereny parków narodowych są miejscem prowadzenia badań naukowych nad zmianami zachodzącymi w środowisku. Ponadto pełnią funkcję miejsc rekreacji i edukacji ekologicznej. Zadania ochrony przyrody w parkach narodowych są realizowane na podstawie planu ochrony parku narodowego. Plan ochrony parku narodowego jest bardzo bogatym źródłem informacji geograficznej i opisowej. Dlatego też należy dążyć do przedstawienia go w formie systemu informacji geograficznej. W niniejszym artykule autorzy podejmują próbę analizy planu ochrony parku narodowego na etapie jego tworzenia pod kątem późniejszego wykorzystania go do tworzenia GISu. W syntetyczny sposób zostały przedstawione etapy pracy nad stworzeniem planu ochrony parku narodowego, jego struktura oraz mapy tematyczne w nim zawarte.
EN
The Nationals Parks are the highest form of large- area objects of environment preservation. Within their borders ecosystems of special environmental values are enclosed. Areas of the National Parks are the places where research at nature changes are being carried out. Moreover they are places of recreation and ecological education. The environment prevention tasks in National Parks are being accomplished on the ground of National Park preservation schema. This schema is very rich source of geographic and description information. This is the reason why it should be represent in the form of Geographic Information System. In this article authors make attempt at analysis of National Park preservation schema. They emphasise creation steps from the point of view further usage it in creating process of GIS. In the synthetic way, the stages of attempt at National Park prevention scheme, its structure and maps are presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.