Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We present a model for predicting inflected word forms based on morphological analogies. Previous work includes rule-based algorithms that determine and copy affixes from one word to another, with limited support for varying inflectional patterns. In related tasks such as morphological reinflection, the algorithm is provided with an explicit enumeration of morphological features which may not be available in all cases. In contrast, our model is feature-free: instead of explicitly representing morphological features, the model is given a demo pair that implicitly specifies a morphological relation (such as write: writes specifying infinitive:present). Given this demo relation and a query word (e.g. watch), the model predicts the target word (e.g. watches). To address this task, we devise a character-based recurrent neural network architecture using three separate encoders and one decoder. Our experimental evaluation on five different languages shows that the exact form can be predicted with high accuracy, consistently beating the baseline methods. Particularly, for English the prediction accuracy is 94.85%. The solution is not limited to copying affixes from the demo relation, but generalizes to words with varying inflectional patterns, and can abstract away from the orthographic level to the level of morphological forms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.