Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: The evidences for demonstrating the contributions of the cerebral cortex in human postural control is increasing. However, there remain little insights about the cortical correlates of balance control in lower-limb amputees. The present study aimed to investigate the cortical activity and balance performance of transfemoral amputees in comparison to healthy individuals during a continuous balance task (CBT). Methods: The postural stability of the participants was defined with limit of stability parameter. Electroencephalography (EEG) data were recorded in synchronization with the center of pressure (CoP) data from eighteen individuals (including eight unilateral transfemoral amputees). We anticipated that, due to the limb loss, the postural demand of transfemoral amputees increases which significantly modulates the spectral power of intrinsic cortical oscillations. Findings: Using the independent components from the sensorimotor areas and supplementary motor area (SMA), our results present a well-pronounced drop of alpha spectral power at sensorimotor area contralateral to sound limb of amputees in comparison to SMA and the sensorimotor area contralateral to prosthetic limb. Following this, we found significantly higher (p < 0.05) limit of stability (LOS) at their sound limb than at the prosthetic limb. Healthy individuals have similar contribution from both the limbs and the EEG alpha spectral power was similar across the three regions of the cortex during the balance control task as expected. Overall, a decent correlation was found between the LOS and alpha spectral power in both amputee and healthy individuals (Pearson’s correlation coefficient > 0.5). Interpretation: By externally stimulating the highlighted cortical regions, neuroplasticity might be promoted which helps to reduce the training time for the efficient rehabilitation of amputees. Additionally, this new knowledge might benefit in the designing and development of innovative interventions to prevent falls due to lower limb amputation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.