In this paper, we are interested in studying the Cauchy problem for a weakly coupled system of two semi-linear structurally damped σk-evolution equations, where σk ≥ 1 for k = 1, 2. Our first purpose involves the proof of global (in time) existence of small data energy solutions by mixing additional Lmk regularity for the data, where mk ∈ [1, 2). We want to point out that in some cases of choosing suitable parameters mk, with k = 1, 2, the obtained lower bound of one exponent p or q related to power nonlinearities on the right-hand sides is really smaller than the critical exponent, the so-called modified Fujita exponent. The second aim of this paper is to discuss a blow-up result for Sobolev solutions with any different fractional values of σk ≥ 1 when m1 = m2.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.