Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Variations in rock mass properties are well-established in rock mechanics and underground mining. The literature is replete with methods of assessing them and determining values that are used in design or numerical analysis. In this paper, a simplified 3D model is constructed for a tabular orebody in the Canadian Shield and instability is quantified using the ”brittle shear ratio” criterion to calculate the volume at risk. A 1-4-7 stope pillar sequence is implemented on four active levels, and three variations in the properties of the host formation are assessed. It is observed that the locations of ore at risk follow the formations of stope pillars and are then transferred to the sill pillars above and below. Instability in the footwall and the hanging wall is observed to be lesser in volume but remains persistent. With the allocation of weak properties to the host rock, at-risk volumes increase in the orebody, footwall, and hanging wall, and the reverse trend occurs with strong greenstone properties. It is concluded that the stress increase in the orebody is due to transfers from the weaker host rock, while that in the greenstone formation is due to the use of a lower compressive strength value.
EN
Large-scale panel destressing is a rockburst mitigation technique employed in deep hard rock mines during remnant pillar extraction. Panels are choke blasted in the pillar footwall to cutoff the far-field major stress in the mining area and deviate them around the pillar. In this study, the effects of panel geometry and far-field stress magnitude are investigated. Destress blast performance is assessed by measuring change to the energy release rate (ERR) of all mining steps during the extraction of a simplified remnant pillar due to destressing. It is demonstrated that the energy release rate (ERR) of critical stopes is reduced by 30% with the base panel geometry. The panel thickness is shown to have the most influence on the efficiency of destressing, followed by the stand-off distance between the panel and the pillar and the overhang length of the panel. The effect of far-field stress magnitude on the ERR is also investigated, and the destress blast performance is expressed as an equivalent major principal stress reduction. It is shown that with the base panel geometry, the destressing program offers the same ERR reduction as a 9.6 MPa reduction in the far-field stress for the most critical stopes. Finally, the Copper Cliff Mine (CCM) panel destressing program is presented as a case study. The ore at risk and ERR are calculated over the extraction and destressing sequence in the pillar with a pillar-wide numerical model.
EN
As a proactive mine safety measure against the occurrence of rockburst, destress blasting has been applied to numerous mining conditions to precondition highly stressed rock mass to mitigate the risk of rockburst occurrence in deep mines as well as in deep underground constructions. However, the application of destress blasting mostly depends on engineering experience, while its mechanism and efficiency have not been well understood. Rapid advances in computer technology have made numerical simulation an economical and effective method to study the rock blasting effect. Enormous research efforts have been made to numerically investigate the blasting fracture mechanism, optimize blasting design, and assess the efficiency of destress blasting. This review focuses on the state-of-the-art progress in numerical modelling associated with destress blasting over the last two decades. Some commonly used modelling approaches for destressing blasting are compared and reviewed. Currently, two different ways of modelling based on static and dynamic modes are typically used to study the effect of blasting. In the static method, destress blasting is simulated by modifying the rock mass’s stiffness and strength properties to obtain the post-blast stress state in the destressed zone. The dynamic modelling technique focuses on the dynamic fracture process of coals and rock masses, during which the predetermination of the damage induced by blasting is not necessary. Moreover, the extent of damage zones around the blast hole can be precisely estimated in the dynamic modelling method by considering time-varying blast pressure and strain rate dependency on the strength of rock mass but at the cost of increased computation and complexity. Besides, different destress blasting modelling methods, generally classified into continuum-based, discrete-based, and coupled methods, are compared and reviewed. The fracture mechanism of blasting in the rock mass is revealed, and the destressing efficiency of the existing destress blasting design is assessed and compared with classical results. The factors that may affect the efficiency of destress blasting are summarized. Finally, the difficulties and challenges associated with the numerical modelling of destress blasting are highlighted briefly.
EN
Mining-induced seismicity is a commonly occurring phenomenon in underground mines. This poses a greater challenge to the safety of the mining operation. This paper presents a case study of the Young-Davidson mine in northern Ontario, Canada, where seismic events of magnitude Mn 2.0+ have been observed at mining depths of 600 to 800 m below the surface. The occurrence of large seismic events at such shallow depths is the key issue of this study. A comprehensive study of the microseismic database has been conducted to discern the root causes for the unusually strong seismic activities recorded at shallow depths. The effects of mining activities in the vicinity of two dykes intersecting the orebody on the seismic response are investigated. Variation of the b-value derived from the magnitude-frequency distribution is examined, and moment tensor inversion for three large seismic events is carried out to determine the source mechanisms. It is shown from this investigation that the influence of the sill pillar is more critical, leading to high mining-induced stress and the occurrence of large events. While the findings from this research are specific to this case study, they could be used to shed light on the causes of induced seismicity at other mines with similar conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.