Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Despite the high efficiency and low cost of wire + arc additive manufacture (WAAM), the epitaxial grown columnar dendrites of WAAM deposited Inconel 718 cause inferior properties and severe anisotropy compared to the wrought components. Fundamental studies on the influence of one-pass cold and warm rolling on hardness and microstructure were investigated. Then the interpass cold and warm rolling on tensile properties were also analyzed. The results show that the one-pass rolling increases the hardness and displays a heterogeneous hardness distribution compared to the as-deposited material, and the warm rolling exhibits a larger and deeper strain compared to cold rolling. The columnar dendrites gradually change to cell dendrites under the rolling process and then change to equiaxed grains with the subsequent new layer deposition. The average grain size is 16.8 μm and 23.5 μm for the warm and cold rolling, respectively. The strongly textured columnar dendrites with preferred < 001 > orientation transform to equiaxed grains with random orientation after rolling process. The grain refinement contributes to the dispersive distributed strengthening phases and the increase in its fraction with heat treatment. The as-deposited samples show superior tensile properties compared to the cast material but inferior compared to the wrought components, while the warm-rolled samples show superior tensile properties to wrought material. Isotropic tensile properties are obtained in warm rolling compared to cold rolling. The rolling process and heat treatment both decrease the elongation and lead to a transgranular ductile fracture mode. Finally, the rolling-induced strengthening mechanism was discussed.
EN
It is well known that nonlinear ultrasound is sensitive to some microstructural characteristics in material. This paper investigates the dependence of the nonlinear ultrasonic characteristic on Al-Cu precipitation in heat-treated 2219-T6 aluminum alloy specimens. The specimens were heat-treated at a constant temperature 155℃ for different exposure times up to 1800 min. The nonlinearity parameter and the changes of precipitates phase were measured for each of the artificially aged specimens. The experimental results show fluctuations in the fractional change in nonlinear parameter (Δβ/β0) and the changes of precipitated phase over the aging time, but with an interesting correlation between the fractional change in nonlinear parameter (Δβ/β0) and the change of precipitate phase over the aging time. Through the experimental data results, the fractional change in nonlinear parameter (Δβ/β0) and the change of precipitate phase over the aging time were fitted curve. Microstructural observations confirmed that those fluctuations are due to the formation and evolution of precipitates that occur in a unique precipitation sequence in this alloy. These results suggest that the nonlinear ultrasonic measurement can be useful for monitoring second phase precipitation in the 2219-T6 aluminum alloy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.