Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the experimental results on the determination of melt parameters such as the energy of the boundary, contact angle, density and kinematic viscosity of low and medium alloy steels at different temperatures, as well as the dispersion of their dendritic structure in solidified castings. The analysis of the data obtained allowed revealing using mathematical models the influence of the chemical composition and temperature of melts on their properties and the dendritic structure of castings. It was established the variation of the melt parameters depending on the particular chemical elements of steels as C, Si, Mn, O, P, V, Cr. The established analytical dependences shown that increasing density and viscosity contributes to the dispersion of the dendritic structure and viscosity is of the major effect. The derived quantitative patterns allows to evaluate structure formation of cast structural low and medium alloy steels.
EN
The chemical composition of alloys plays an important role at their crystallization and influences the solid phase formation, and thus, microstructure and properties. The present paper studies the release of the heat of crystallization of alloyed wear-resistant cast irons in order to determine the quantitative patterns of the chemical composition influence to the kinetics of crystallization. The differential thermal analysis was applied to get the data of heat release, its rate at cast iron temperature decrease. The normalized dependence of the amount of crystallization heat over time was obtained. The main temperature parameters were analyzed and four stages at irons crystallization were established and characterized with their duration and released heat. The multiple correlation analysis allowed considering a numerous physical and chemical factors and distinguishing their role at crystallization of irons. As a result, the quantitative regularities are determined of influencing the content of alloying elements, impurities and carbides on a heat and time of crystallization at the different stages of solidification, which are of great importance in developing alloyed irons with required quality and properties.
EN
The formation process of one of the most common casting defects, a shrinkage depression concerned to shrinkage cavity, was studied. The methodology, device and the experimental set up were developed to study the shrinkage cavity growth. The kinetics of vacuum formation in the cavity of the spherical casting of Al-Si-Mg alloy at its solidification in the sand-and-clay form was investigated. The data were analysed taking in mind the temperature variation in the centre of crystallizing casting. The causes of the shrinkage depression in castings were clarified. It was determined that atmospheric pressure leads to the retraction and curvature of metal layer on the surface of the casting with lower strength below which the shrinkage cavity is formed. To avoid such defects it was recommended to use the external or internal chills, feeders and other known technological methods. Deep shrinkage cavities inside the castings could be removed with an air flow through a thin tubular needle of austenitic steels for medical injections.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.