Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł przedstawia wyniki badań trzech fibrobetonów z dodatkiem włókien polimerowych. Wpływ rodzaju i ilości włókien był widoczny po zarysowaniu się belek. Na podstawie obliczonych wytrzymałości równoważnych, resztkowych, energii pękania oraz ilorazów odporności na pękanie stwierdzono, że fibrobeton z największą ilością makrowłókien osiągał najlepsze wyniki. Porównano trzecią i czwartą edycję Raportu Technicznego 34 oraz uznano, iż dodatek włókien umożliwia zwiększenie nośności płyty na gruncie obciążonej w środku oraz na krawędzi.
EN
The article presents the results of testing three polymer fiber reinforced concretes (FRC). The influence of fiber type and dosage became evident after cracking of beams. Based on the calculated equivalent and residual flexural tensile strengths, fracture energy, and toughness index, it was stated that FRC with the highest amount of macrofibers achieved the best results. The third and fourth editions of Technical Report 34 were compared and it was claimed that the fiber addition enables an increase in the load - carrying capacity of the ground slabs loaded at the centre and on the edge.
2
Content available remote Wpływ zbrojenia rozproszonego na pracę posadzek na gruncie
PL
Temat zachowania się posadzek przemysłowych z dodatkiem zbrojenia rozproszonego ma charakter interdyscyplinarny i wymaga wiedzy nie tylko konstrukcyjnej, ale również geotechnicznej i materiałowej. Jednak pomimo rosnącej wiedzy i doświadczenia, fibrobeton nadal budzi nieufność. W związku z tym celem artykułu było przedstawienie wybranych zagadnień oraz badań dotyczących płyt na gruncie ze zbrojeniem rozproszonym. Opisane artykuły potwierdziły pozytywny wpływ dodatku, jak i zwiększonej ilości włókien stalowych oraz syntetycznych na nośność płyt. Dodatkowo stwierdzono, że w wyniku zastosowania odpowiedniej mieszanki z włóknami stalowymi możliwe jest ograniczenie lub nawet rezygnacja ze stalowych siatek zbrojeniowych oraz rekompensacja słabego stopnia zagęszczania podłoża gruntowego. Potwierdzono również korzystny wpływ włókien stalowych i syntetycznych na rysoodporność, ciągliwość oraz zmniejszenie wartości ugięć i przemieszczeń. Na koniec artykułu opisano planowane badania Wydziału Budownictwa Politechniki Śląskiej płyt na gruncie z dodatkiem włókien syntetycznych. Celem tych badań będzie określenie wpływu włókien oraz właściwości podparcia na nośność na przebicie, deformacje i zarysowania obciążanych punktowo płyt.
EN
The subject of fiber reinforced concrete (FRC) industrial floors has an interdisciplinary nature and requires not only structural, but also geotechnical and material knowledge. However, despite growing awareness and experience, FRC still arouses distrust. Therefore, the purpose of this article was to present selected topics and studies on FRC ground slabs. The described articles confirmed the positive effect of the addition and the increased dosage of steel and synthetic fibers on the load-bearing capacity of the slabs. Moreover, it was found that, when a suitable mixture with steel fibers is used, it is possible to reduce or even resign from steel reinforcing meshes and compensate for poor ground conditions. The beneficial effect of steel and synthetic fibers on crack resistance, ductility as well as reduction of deflection and displacement values was also confirmed. At the end of the article, the planned research of the Faculty of Civil Engineering of the Silesian University of Technology of ground slabs with the addition of synthetic fibers was described. The purpose of this research will be to determine the effect of fibers and support properties on the punching shear resistance, deformation and crack propagation of point-loaded slabs.
PL
Artykuł dotyczy posadzki przemysłowej wykonanej na podbudowie z reaktywnego żużlu. Po upływie pięciu lat od wykonania obiektu użytkownik zgłosił uszkodzenia wynikające z przemieszczeń posadzki. Zaobserwowano pęknięcia i zarysowania warstw wykończeniowych, widoczne zwłaszcza na ścianach działowych. W celu zidentyfikowania przyczyn uszkodzeń przeprowadzono badania geotechniczne i geodezyjne. Badania wykazały występowanie reaktywnego żużlu jako warstwy podbudowy. Pomiary przemieszczeń posadzki prowadzono przez cztery lata, od listopada 2019 r. do listopada 2023 r. Pomimo upływu dziesięciu lat od wykonania posadzki, nadal dochodzi do jej wypiętrzania. Średni przyrost przemieszczeń całej posadzki wynosi 6 mm/rok w ciągu ostatnich trzech lat, a maksymalne przemieszczenie w punkcie środkowym posadzki osiągnęło 80 mm. Ciągły przyrost przemieszczeń i uszkodzeń uniemożliwia naprawę obiektu i jego dalsze użytkowanie. Badania mikroskopowe oraz pomiary geodezyjne nie wskazują na zahamowanie procesów pęcznienia posadzki.
EN
The paper discusses an industrial floor that was constructed on a reactive slag subbase. Five years after completion, the user reported damage caused by floor displacement. Cracks and scratches were observed in the finishing layers, particularly at the connection between the partition walls and the floor, Geotechnical and surveying investigations were carried out to determine the cause of the damage. The investigations revealed the presence of reactive slag as the subbase layer. Floor displacement measurements were taken over a four-year period, from November 2019 to November 2023. Despite being ten years since construction, uplift continues to occur. The average annual increase in displacement for the entire floor over the past three years is 6 mm, with a maximum displacement of 80 mm at the midpoint of the floor, The ongoing increase in displacement and damage makes repairing the building and maintaining its use impossible. Microscopic examinations and geodetic measurements do not indicate a stopping of the expansion processes of the subbase.
EN
The article presents the results of a detailed experimental campaign including a compressive strength test, three- and four-point bending test (3PBT and 4PBT, respectively) of polymer fiber reinforced concrete with the addition of metakaolin. The comprehensive analysis included three Types of concrete mixture differing in amount and used polymer fibers. It was concluded that polymer fibers did not influence the maximum compressive and flexural tensile strength of concrete. On the other hand, they had a beneficial effect on the ductility, residual and equivalent flexural tensile strengths, and fracture energy of samples. The mixtures of Type 1 and 2 were characterized by softening behaviour but the mixture of Type 3 by soft-hardening behaviour. In the 3PBT, the residual flexural tensile strengths obtained according to EN 14651 did not correspond clearly with equivalent flexural tensile strengths calculated in compliance with RILEM TC 162-TDF. It is noteworthy that the effectiveness and correctness of equations presented in other work of the authors referring to dependencies between deflection, crack and tip mouth opening displacements for the 3PBT were confirmed on samples with different composition and fibers. Based on the 4PBT, the equivalent flexural tensile strengths according to JCI-SF4 standard were calculated and the correlations with the results from 3PBT were defined.
PL
Obecnie coraz większy nacisk kładzie się na zrównoważony rozwój produkcji i konsumpcji betonu. Wynika to z faktu, że produkcja cementu odpowiada za około 5% światowej emisji CO2. W celu znalezienia korzystniejszego rozwiązania dla prefabrykowanych korytek ściekowych uwzględniającego zalecenia redukcji CO2 oraz polepszenia właściwości mechanicznych i trwałościowych, zmodyfikowano skład mieszanki betonowej. Zastosowano metakaolin (MK) jako częściowy zamiennik cementu w celu zmniejszenia ilości klinkieru oraz dodano do mieszanki betonowej włókna polimerowe (PF). W artykule przedstawiono wyniki szczegółowej kampanii eksperymentalnej obejmującej testy wytrzymałości na ściskanie, trzy- i czteropunktowe zginanie (odpowiednio testy 3PBT i 4PBT) betonu zbrojonego włóknami polimerowymi (PFRC) z dodatkiem MK. Badania obejmowały trzy typy mieszanek betonowych różniące się ilością oraz typem zastosowanych PF. Każda mieszanka betonowa zawierała zarówno mikro- jak i makrowłókna polimerowe (odpowiednio mikroPF i makroPF), zatem można je było nazwać hybrydowymi PFRC. Typ 1 i 2 zawierał 2,0 kg/m3 makroPF i 1,0 kg/m3 mikroPF, różnica polegała na rodzaju włókna makro. Natomiast do Typu 3 dodano 2,5 i 0,5 kg/m3 makro- i mikroPF, odpowiednio, rodzaj włókien był taki sam jak w Typie 2. Wykonano sześć kostek o wymiarach 150 × 150 × 150 mm do testów wytrzymałości na ściskanie zgodnych z normą EN 206; sześć belek o wymiarach 150 × 150 × 700 mm do testów 3PBT zgodnych z normą EN 14651, które później nacięto w środku rozpiętości oraz trzy belki o wymiarach 150 × 150 × 700 mm do testów 4PBT zgodnych z normą EN 12390-5. W wyniku badań stwierdzono, że dodatek PF do mieszanki betonowej nie wpłynął na wytrzymałość na ściskanie betonu. Średnia wytrzymałość na ściskanie fc wyniosła 44,44 MPa, a klasę betonu dla wszystkich badanych typów betonu określono jako C30/37.
PL
Celem artykułu jest przedstawienie wyników badań próbek wykonanych z trzech mieszanek betonowych z dodatkiem włókien polimerowych. Stwierdzono, że na maksymalną wytrzymałość na ściskanie i rozciąganie przy zginaniu nie miał wpływu rodzaj i ilość włókien. Ich wpływ był widoczny po zarysowaniu się belek w teście trzypunktowego zginania. Określono i porównano resztkowe oraz równoważne wytrzymałości na rozciąganie przy zginaniu. Ponadto opisano zależności pomiędzy ugięciem oraz rozwarciem początku i końca nacięcia w zginanych belkach.
EN
The aim of the article was to present the results of testing three speciments made of polymer fiber reinforced concretes (FRC). It was found that the maximum compressive and flexural tensile strength was not affected by the type and amount of fibres. Their influence was visible after the cracking of the beams in the three - point bending test. Residual and equivalent flexural tensile strengths were calculated and compared. Finally, the dependencies between beam’s deflection and crack mouth and tip opening displacement in the flexural tests were described.
PL
Fibrobeton charakteryzuje się zdolnością przenoszenia obciążeń przy zwiększającej się szerokości rozwarcia rysy nawet po osiągnięciu maksymalnej nośności. W związku z tym konieczna jest obserwacja oraz analiza propagacji i zwiększania się tego zarysowania. W tym celu można użyć tradycyjnych metod pomiarowych: mierników zaciskowych bądź czujników przemieszczeń. Coraz częściej jednak stosuje się technikę cyfrowej korelacji obrazu jako alternatywną, uzupełniającą lub sprawdzającą metodę pomiarową. W artykule skupiono się na analizie porównawczej wyników z bezpośrednich urządzeń pomiarowych z wynikami z czujników wirtualnych uzyskanych w testach trzypunktowego zginania oraz rozłupywania Montevideo. Badane były próbki fibrobetonowe z trzema różnymi rodzajami włókien polimerowych, różniące się również zawartością tych włókien w mieszance betonowej.
EN
Fiber reinforced concrete is characterized by the ability to transfer loads with increasing crack width, even after reaching the maximum load capacity. Therefore, it is necessary to observe and analyse the propagation and increase of the crack. For this purpose, the traditional measurement methods like clip gauges or linear variable displacement transducers can be used. However, the digital image correlation technique is increasingly gaining popularity as an alternative, supplementary or verifying measurement method. The article focuses on the comparative analysis of the results from direct measuring devices with the results from virtual sensors obtained in the three-point bending test and Montevideo splitting tensile test. Fiber reinforced concrete samples with three different types of polymer fibers and their different content in the concrete mix were tested.
PL
W artykule opisano obszary zastosowań fibrobetonów z włóknami szklanymi oraz podkreślono możliwość tworzenia nie tylko elementów konstrukcyjnych przeznaczonych głównie do przenoszenia obciążeń, ale także struktur towarzyszących procesom budowlanym oraz form małej architektury, które uatrakcyjniają i urozmaicają przestrzenie publiczne. Dzięki ulepszonym właściwościom mechanicznym, zmniejszonym ciężarze i większej swobodzie projektowej elementów z włóknami szklanymi możliwe jest tworzenie wytrzymalszych, bezpieczniejszych, trwalszych oraz nowocześniejszych konstrukcji.
EN
The article describes the areas of application of glass fiber reinforced concrete and emphasizes the possibility of creating not only structural elements intended mainly for carrying loads but also structures accompanying construction processes and forms of small architecture that make public spaces more attractive and diversified. Thanks to improved mechanical properties, reduced weight, and greater design freedom of elements with glass fibers, it is possible to create stronger, safer, more durable, and modern structures.
PL
Celem artykułu była analiza porównawcza wytrzymałości betonu z dodatkiem włókien polimerowych uzyskanych w badaniach jednoosiowego rozciągania, trzypunktowego zginania i rozłupywania Montevideo. Wykonano jedną mieszankę bez włókien i pięć mieszanek fibrobetonowych z 2 lub 3 kg/m3 włókien o różnej geometrii i formie. Stwierdzono, że dodanie włókien nie wpłynęło w istotny sposób na maksymalną wytrzymałość betonu na ściskanie, jednoosiowe rozciąganie, zginanie i rozłupywanie. Natomiast poprawie uległy siły i wytrzymałości resztkowe, energia pękania i ciągliwość betonu. Obliczony współczynnik korelacji obciążenia (kTRMV = 1,5) pozwolił na porównanie wyników testu rozłupywania Montevideo z testami trzypunktowego zginania przy szerokości rozwarcia rysy większej niż 1 mm. Test rozłupywania Montevideo może być prostszą i bardziej kompaktową metodą badawczą w porównaniu z testem trzypunktowego zginania.
EN
The aim of the article was a comparative analysis of concrete strenght with the addition of polymer fibers subjected to three test methods: the uniaxial tensile test, the three-point bending test, and the Montevideo splitting tensile test. One mix without fibers and five fiber reinforced concrete mixes were made with 2 or 3 kg/m3 of polymer fibers of different geometry and form. It was found that the addition of fibers did not significantly affect the maximum compressive, uniaxial tensile, flexural, and splitting tensile strength of concrete. On the other hand, residual forces and strengths, fracture energy, and ductility of concrete were significantly improved. The calculated load correlation coefficient (kTRMV = 1.5) allowed the correlation of the results of the Montevideo splitting tensile test with the three-point bending test for a crack mouth opening displacement greater than 1mm. Overall, the Montevideo splitting test may be a simpler and more compact test method compared to the three-point bending test.
9
PL
Główną rolą, jaką odgrywają włókna polipropylenowe w strukturze betonu, jest redukcja zarysowań oraz zwiększenie wytrzymałości na rozciąganie i zginanie. Pozytywny wpływ dodatku włókien do betonu jest również zauważalny w badaniach ciągliwości oraz wytrzymałości na ścieranie, uderzenia, odłupywanie oraz cykle zamarzania i odmrażania. Natomiast mniejsza porowatość, przepuszczalność i absorbcja wody pozwalają na przedłużenie trwałości elementów ze zbrojeniem rozproszonym. Fibrobeton z włóknami polipropylenowymi jest to zatem materiał o zwiększonej wytrzymałości, trwałości i bezpieczeństwie. Jego duża atrakcyjność wynika również z możliwości produkowania elementów w różnych rozmiarach, kształtach i barwach, a zredukowany ciężar jest dodatkowym atutem. Przestrzeń publiczna jest obiecującym obszarem zastosowania betonu zbrojonego włóknem polipropylenowym. Wykorzystuje się go bowiem do tworzenia paneli chodnikowych i drogowych, paneli ściennych, m.in. barier dźwiękochłonnych, elementów nabrzeży, promenad, bulwarów nadmorskich, fontann, oczek wodnych, stołów, ławek, donic, koszy na śmieci, rzeźb, płaskorzeźb, portali dekoracyjnych drzwi i okien, sztucznych skał, plaż, klifów, egzotycznych krajobrazów oraz skateparków i boisk.
EN
The main task of polypropylene fibres in the concrete texture is to reduce cracks and increase tensile and flexural strength. The positive effect of the addition of fibres to concrete is also noticeable during the tests of toughness and resistance to abrasion, impact, spalling as well as freeze-thaw cycles. On the other hand, lower porosity, permeability and water absorption allow to extend the life of the elements with dispersed reinforcement. Polypropylene fibre reinforced concrete is therefore a material with increased strength, durability and safety. Thanks to the possibility of producing elements in various sizes, shapes and colours, as well as the reduced weight is an additional advantage it is a very attractive material. There is a great potential for application of polypropylene fibre reinforced concrete in public spaces, as it can be used to produce sidewalk and road panels, wall panels, including soundproof barriers, elements of quays, promenades, seaside boulevards, fountains, ponds, tables, benches, flower pots, litter bins, sculptures, bas-reliefs, door and window decorative portals, artificial rocks, beaches, cliffs, exotic landscapes, as well as skate parks and sports grounds.
PL
W artykule przedstawiono studium przypadku oceny rzeczywistej wytrzymałości betonu trzema metodami w obiekcie zabytkowym. Opisane prace stanowią wycinek prowadzonych na obiekcie badań materiałowych, makroskopowych oraz obliczeń statyczno-wytrzymałościowych.
EN
The article presents a case study of the actual assessment of concrete strength in a historic building using three methods. The described activities are a part of the material and macroscopic tests as well as static and strength calculations carried out in the facility.
PL
Fibrobeton, czyli beton zbrojony włóknami, otrzymywany jest przez dodanie do mieszanki betonowej włókien metalicznych lub niemetalicznych. Przeprowadzone badania miały na celu sprawdzenie, czy norma PN-EN 14651, przeznaczona do trzypunktowego testu zginania betonowych próbek zbrojonych włóknami metalicznymi, może być również zastosowana do badań betonu z włóknami syntetycznymi. Zbadano ponadto urabialność i wytrzymałość na ściskanie betonu z włóknami i bez nich. Sprawdzono również, czy dana objętość i rodzaj zastosowanej fibry mógłby zastąpić tradycyjne zbrojenie prętami stalowymi, a więc czy badany kompozyt może pełnić funkcję konstrukcyjną. W ramach badań została przygotowana betonowa mieszanka bez włókien oraz mieszanka z dodatkiem 0,22% (2 kg/m3) włókien syntetycznych. Dla obu mieszanek ilość cementu, kruszywa, wody i superplastifikatora była identyczna. W artykule omówiono podstawy prowadzenia badań, zastosowane materiały, sposób przygotowania próbek oraz technikę badań i wyniki badań wytrzymałości na ściskanie.
EN
Fiber-reinforced concrete is obtained by adding metallic or nonmetallic fibers to the concrete mixture. The tests were carried out to check whether the PN-EN 14651 standard, intended for three-point bending test the concrete samples reinforced with metallic fibers, can also be used for testing the concrete samples reinforced with synthetic fibers. In addition, the workability and compressive strength of concrete with and without fibers were tested. It was also checked whether used volume and type of fiber could replace traditional reinforcement with steel bars, and thus whether the tested composite can function as a structure. As part of the research, concrete mixture without fibers and with the addition of 0,22% (2 kg/m3) of synthetic fibers were prepared. For both mixtures, the amount of cement, aggregate, water and superplasticizer was identical. The article presents the basics of testing, materials used, method of sample preparation as well as the test technique, and the results of the compressive strength tests.
PL
W artykule przedstawiono wyniki badań wytrzymałości na rozciąganie przy zginaniu betonu z włóknami syntetycznymi. Badania wykonano zgodnie z normą PN-EN 14651 [5] jako test trzypunktowego zginania. Otrzymane wyniki porównano z innymi badaniami dostępnymi w literaturze oraz z wynikami obliczeń. Artykuł jest drugą częścią cyklu składającego się z trzech publikacji. W pierwszym artykule [1] opisano materiały i procedury badań oraz wyniki badań konsystencji i wytrzymałości na ściskanie betonu bez włókien oraz fibrobetonu. W ostatniej części przeprowadzona zostanie analiza wyników badań, w tym określenie energii pękania i zależności pomiędzy wytrzymałością na ściskanie i na rozciąganie przy zginaniu.
EN
The article presents the results of tests of bending tensile strength of concrete with synthetic fibres. The tests were carried out in accordance with the PN-EN 14651 standard as a threepoint bending test. The obtained results were compared with other tests results available in literature and with the results of calculations. The article is a second part of a cycle consisting of three publications. In the first article, materials and test procedures were described, as well as the results of the flexural and compressive tests of concrete with and without fibres. In the last part, the analysis of the test results, including the determination of the fracture energy and the relationship between compressive strength and flexural strength.
PL
W artykule zamieszczono analizę wyników badań opisanych w pracach [7] i [8]. Przeprowadzono klasyfikację wytrzymałości fibrobetonu, określono energię zniszczenia, przeanalizowano zależność pomiędzy wytrzymałością na ściskanie i na rozciąganie przy zginaniu oraz zależności F-CMOD, F-δ i F-CTOD. Wykazano, że norma PN-EN 14651 przeznaczona do badań belek z włóknami metalicznymi może być stosowana do badania belek z włóknami syntetycznymi. Artykuł zakończono wnioskami wynikającymi z przeprowadzonych badań i analiz.
EN
The article contains an analysis of the results of the research described in [7] and [8]. The classification of the fiber-reinforced concrete strength was carried out, fracture energy was calculated and the relationship between the compressive and flexural strength, as well as the dependencies of F-CMOD, F-δ and F-CTOD were analyzed. It has been proved that the PN EN 14651 standard, intended for testing beams with metallic fibers, can be used to test beams with synthetic fibers. The article ends with the conclusions resulting from the conducted research and analysis.
PL
Przedstawiono możliwość zastosowania normy PN-EN 14651, przeznaczonej do badania betonów z fibrą stalową, do określenia wytrzymałości na rozciąganie przy zginaniu betonów z dodatkiem 2,0 i 3,0 kg/m3 włókien polimerowych o różnej geometrii i formie. Pozostały skład mieszanki betonowej był niezmienny w przypadku każdej serii. Opisano również użyte materiały, metodykę badań oraz wyniki badań konsystencji i wytrzymałości na ściskanie betonów z fibrą i bez fibry. Przeprowadzono analizę uzyskanych wyników i podsumowano wpływ włókien niemetalicznych na właściwości betonu.
EN
In the article, the possibility of use the PN-EN 14651 standard, intended for testing concretes with steel fibers, to determine the flexural strength of concrete with the addition of 2.0 and 3.0 kg/m3 of polypropylene fibers of different geometry and form was presented The remaining composition of the concrete mix was the same for each series. Additionally, the used materials, the methodology of tests, results of consistency tests and the evaluation of the compressive strength of concrete with and without fibers were discussed. Finally, the obtained results were analyzed and the influence of non - metallic fibers on the properties of concrete was summarized.
PL
Uzyskane z własnych badań wyniki porównano z istniejącymi w literaturze wzorami empirycznymi do określenia wytrzymałości na rozciąganie przy zginaniu fibrobetonów ze stalowym zbrojeniem rozproszonym. Zaproponowano własny wzór dotyczący betonów z włóknami syntetycznymi o nominalnej zawartości włókien ≤0,5% i smukłości do 200. Podjęto próbę klasyfikacji wytrzymałości przebadanych mieszanek zgodnie z Model Code 2010. Przeanalizowano wyniki energii pękania i zależności krzywych: siła - szerokość rozwarcia rysy; siła - ugięcie i siła - szerokość przemieszczenia końcówki rysy.
EN
The obtained results were compared with the empirical formulas existing in the literature for the calculation of the fiexural strength of fiber reinforced concretes with dispersed steel fibers. The new formula determined by the authors was also proposed for concrete with synthetic fibers with a nominal fiber content ≤0.5% and a slenderness of up to 200. In addition, an attempt was made to evaluate the strengths of tested concrete mixtures in accordance with the Model Code 2010. Finally, the fracture energy results and curve dependencies: force-crack mouth opening displacement; force-deflection and force-crack tip opening displacement were analyzed.
16
PL
Fibrobeton jest to kompozyt cementowy ze zbrojeniem rozproszonym w postaci włókien metalicznych bądź niemetalicznych. Ze względu na długość rozróżnia się mikro- i makrowłókna. Włókna dłuższe mają zdolność przenoszenia obciążeń działających na konstrukcje, dzięki czemu mogą pełnić funkcję konstrukcyjną, a tym samym zastępować tradycyjne zbrojenie prętowe. Włókna krótsze, w wyniku ich dużej liczby nawet przy małym dozowaniu, są o wiele bardziej efektywne w wiązaniu mikropęknięć i ograniczaniu powstawania rys skurczowych. Popularna jest także idea łączenia mikro- i makrowłókien. W zależności od rodzaju i objętości włókien w mieszance betonowej zmieniają się jej właściwości reologiczne. Dodanie zbrojenia rozproszonego do betonu może skutkować koniecznością zmodyfikowania jego kompozycji, gdyż najprawdopodobniej dojdzie do pogorszenia urabialności mieszanki. Zastosowanie włókien ma szczególnie pozytywny wpływ na ograniczenie skurczu plastycznego, a również zwiększenie udarności oraz mrozoodporności. Fibrobeton stosuje się głównie do produkcji posadzek przemysłowych, nawierzchni komunikacyjnych, elementów elewacyjnych, a także obudów tuneli, deskowań, elementów małej architektury oraz jako beton natryskowy. W artykule opisano właściwości niemetalicznych włókien polimerowych, polipropylenowych, szklanych i węglowych. Dodatkowo omówiono wpływ obecności włókien na właściwości fizyczne i mechaniczne fibrobetonu.
EN
Fibre reinforced concrete is a cementious composite material with a distributed reinforcement in form of metallic or nonmetallic fibres. In terms of length, micro- and macrofibres are distinguished. Longer fibres have the ability to transfer loads acting on the structure. They can perform a structural function and thus replace traditional bar reinforcement. Shorter fibres, present in large numbers, even in small dosage, are much more effective in bridging microcracks and limiting shrinkage cracks. The idea of combining micro- and macrofibres is also gaining popularity. Rheological properties change according to the type and volume of fibres in the concrete mix. Namely, adding fibres may require modification of mixture composition, as its workability decreases. The use of fibres has a particularly positive effect on reducing plastic shrinkage, as well as on increasing impact strength and frost resistance. Fibre reinforced concrete is mainly used for production of industrial floors, communication surfaces, facade elements, as well as tunnel cladding, formworks, landscaping elements and as a shotcrete. The article describes the properties of non-metallic polymer, polypropylene, glass and carbon fibres. Additionally, the influence of fibre presence on physical and mechanical properties of concrete is discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.