Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Composite panels, for example fuselage skins or wing skins of military aircraft, may be subjected to a variety of ballistic impacts. It is meaningful to understand the mechanical response, damage evolution and residual velocity of a projectile for panels under ballistic impact. In this paper, the numerical simulation method of ballistic impact on a laminated composite panel is considered. A rate-dependent material model based on the continuum damage mechanics concept is developed for polymer matrix composite materials. A full three-dimensional finite element model implemented with the material model is built up using material subroutine. The ballistic impact behavior is simulated employing an explicit dynamic finite element analysis technique. The effects of projectile size and velocity, layup of the composite panel, and failure criteria used on the ballistic impact response are investigated.
EN
The regional hardening of the Late Cenomanian to Early Turonian Chalk of the Northern Province of eastern England has been investigated by examining the pattern of trace elements and stable carbon and oxygen isotopes in the bulk calcite of two extensive and stratigraphically adjacent units each 4 to 5 m thick of hard chalk in Lincolnshire and Yorkshire. These units are separated by a sequence, 0.3–1.3 m thick, of variegated marls and clayey marls. Modelling of the geochemistry of the hard chalk by comparison with the Standard Louth Chalk, combined with associated petrographic and geological evidence, indicates that (1) the hardening is due to the precipitation of a calcite cement, and (2) the regional and stratigraphical patterns of geochemical variation in the cement are largely independent of each other and have been maintained by the impermeable nature of the thin sequence of the clay-rich marls that separate them. Two phases of calcite cementation are recognised. The first phase was microbially influenced and did not lithify the chalk. It took place predominantly in oxic and suboxic conditions under considerable overpressure in which the Chalk pore fluids circulated within the units, driven by variations in compaction, temperature, pore fluid pressure and local tectonics. There is evidence in central and southern Lincolnshire of the loss of Sr and Mg-enriched pore fluids to the south during an early part of this phase. The second phase of calcite precipitation was associated with the loss of overpressure in probably Late Cretaceous and in Cenozoic times as the result of fault movement in the basement penetrating the overlying Chalk and damaging the seal between the two chalk units. This greatly enhanced grain pressures, resulting in grain welding and pressure dissolution, causing lithification with the development of stylolites, marl seams, and brittle fractures. Associated with this loss of overpressure was the penetration of the chalk units by allochthonous fluids, rich in sulphate and hydrocarbons, derived probably from the North Sea Basin. Microbial sulphate-reduction under anoxic conditions within these allochthonous fluids has been responsible for dissolving the fine-grained iron and manganese oxides within the chalk, locally enriching the Fe and Mn content of the calcite cement. The possibility is discussed that the pattern of cementation preserved in these regionally hard chalks of Late Cenomanian and Early Turonian age may be different from that preserved in the younger (late Turonian to Campanian) more basinal chalks of eastern England.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.