Niniejszy artykuł poświęcono zagadnieniom modelowania wirtualnego świata 3D na potrzeby symulatorów kolejowych oraz problematyce tworzenia mapy. Zaproponowano algorytm wykorzystujący metody sztucznej inteligencji do wykrywania, klasyfikacji i umieszczania obiektów infrastruktury kolejowej z nagrania wideo oraz danych GPS w wirtualnym świecie 3D. Proponowane rozwiązanie, wspierające automatyczną generację wirtualnych elementów infrastruktury kolejowej, stanowi istotną nowość w obszarze badań.
EN
This article is devoted to the issues of modeling a 3D virtual world for railroad simulators and the problems of creating a map for such a simulator. An algorithm using artificial intelligence methods for detection, classification, and place railway infrastructure objects from video recordings in a 3D virtual world, as well as GPS data has been proposed. The proposed solution, supporting automatic generation of virtual elements of railway infrastructure, is a significant innovation in the field of research.
The inventory systems are highly variable and uncertain due to market demand instability, increased environmental impact, and perishability processes. The reduction of waste and minimization of holding and shortage costs are the main topics studied within the inventory management area. The main difficulty is the variability of perishability and other processes that occurred in inventory systems and the solution for a trade-off between sufficient inventory level and waste of products. In this paper, the approach for resolving this trade-off is proposed. The presented approach assumes the application of a state-feedback neural network controller to generate the optimal quantity of orders considering an uncertain deterioration process and the FIFO issuing policy. The development of the control system is based on state-space close loop control along with neural networks. For modelling the perishability process Weibull distribution and FIFO policy are applied. For the optimization of the designed control system, the evolutionary NSGA-II algorithm is used. The robustness of the proposed approach is provided using the minimax decision rule. The worst-case scenario of an uncertain perishability process is considered. For assessing the proposed approach, simulation research is conducted for different variants of controller structure and model parameters. We perform extensive numerical simulations in which the assessment process of obtained solutions is conducted using hyper volume indicator and average absolute deviation between results obtained for the learning and testing set. The results indicate that the proposed approach can significantly improve the performance of the perishable inventory system and provides robustness for the uncertain changes in the perishability process.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.