Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study was aimed to investigate the development of a technology for the extraction of niobium pentaoxide and ammonium sulfate from titanium-magnesium production waste, specifically, the sublimates of dust chamber into concentrate in the form of niobium pentoxide. Optimal conditions for washing the niobium hydroxide precipitate by repulpation with hot (60–70°C) distilled water, drying at 200°C for 6 hours were determined. The influence of temperature and duration of the process was studied. Optimal conditions for the dynamic desorption of niobium from saturated ionite (Purolite A100) was determined. The results further indicated that the optimum quantity of the solution of desorption with sulfuric acid was equal to 5.5% and ammonium oxalate was equal to 4%, while temperature and the flow rate of the desorbing solution was 22–27°C and 6 rpm, respectively. The study of the precipitation of niobium from sulfuric acid desorbates showed that the interaction of niobium ions with ammonia takes place at a low rate. The degree of precipitation of niobium hydroxide equal to 99.6% was achieved in 7 hours of agitation of the suspension at a temperature of 22–25°C.
2
Content available Processing of Titanium-Magnesium Production Waste
EN
The article presents the results of research on the processing of such wastes of titanium-magnesium production as sludge from sludge dumps and fine dump dusts from the electric smelting of ilmenite concentrates. The results of nitric acid leaching of sludge with the transfer of calcium into solution and the production of calcium nitrate are given. Titanium-containing cake after nitric acid leaching of sludge and electric smelting dust cannot be returned to the technological process due to its high silica content, so the silicon impurity was removed from their composition. Silicon removal was performed by fluoroammonium processing with sublimation of hexafluorosilicate compounds. An amorphous silicon dioxide product was obtained, after ammonia hydrolysis of silicon-containing sublimations and appropriate treatment of the sediment. The residue from the sublimation of silicon fluorides consists mainly of titanium-containing phases and can be suitable for return for electrofusion after ammonia treatment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.