Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We are motivated to study the exploitation of marine energy as a renewable resource because of society's ever-increasing energy demands, and a concomitant need to reduce greenhouse gas emissions. Additionally, climate-related variations in wave energy should be investigated in order to ensure the stability of its long-term availability. Here, we investigate the potential for wave energy in the Persian Gulf along the southern coasts of Iran. To do so, we have applied the Mike SW numerical model and ECMWF wind field data for a 30-year study, from 1988 to 2017. For this purpose, wave energy was evaluated at six points in the western, northern, southern, and eastern parts of the Persian Gulf. To assess the impacts of climate change, we also consider the wave regime from 2070 to 2099 (for 30 years) following IPCC RCP4.5 and RCP8.5 climate change scenarios. Our findings suggest that in the present climate, seasonal variations in the mean wave parameters (i.e. wave energy, wave period, and significant wave height) correspond to the lowest wave energy in the summers, and highest in the winters. In the future climate change scenarios, energy level variations generally have similar patterns, with slight modulations in some local areas.
2
EN
A substantial body of research has shown that two key factors of global sea level rise are thermal expansion and melting of land-based ice, glaciers and ice sheets. Moreover, climate change may result in changes to wind speeds and directions, consequently resulting in contributions to variations in wind-wave components, wave heights and directions. In this research, climate change scenarios were used to assess the coastal vulnerability to the Chabahar port area due to global sea level rise, significant wave height changes and tidal regime effects. These three items were calculated separately using numerical models and the impacts of possible climate change scenarios were applied to estimate possible changes to these items by 2100. Significant wave heights for 25, 50 and 100-year return periods were evaluated. Based on statistical analysis, the maximum significant wave heights for the A2 and A1B scenarios were estimated at approximately 13.7 and 7.6, respectively. Since the main aim of this research was to assess the coastal zones at higher flood risk, therefore the mean global sea level rise, extreme values of significant wave heights and tidal heights were investigated. The height of sea during sea storms and for the most extreme case was calculated as 17.3 m and 11.2 m for A2 and the A1B scenarios, respectively. According to output maps of inundation areas, large coastal zones in the Chabahar port area are at risk due to the sea storms and possible climate change.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.