Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Diabetes mellitus (DM) is a multifactorial disease characterized by hyperglycemia. The type 1 and type 2 DM are two different conditions with insulin deficiency and insulin resistance, respectively. It may cause atherosclerosis, stroke, myocardial infarction and other relevant complications. It also features neurological degeneration with autonomic dysfunction to meet metabolic demand. The autonomic balance controls the physiological variables that exhibit nonlinear dynamics. Thus, in current work, nonlinear heart rate variability (HRV) parameters in prognosis of diabetes using artificial neural network (ANN) and support vector machine (SVM) have been demonstrated. The digital lead-I electrocardiogram (ECG) was recorded from male Wister rats of 10–12 week of age and 200 ± 20 gm of weight from control (n = 5) as well as from Streptozotocin induced diabetic rats (n = 5). A total of 526 datasets were computed from the recorded ECG data for evaluating thirteen nonlinear HRV parameters and used for training and testing of ANN. Using these parameters as inputs, the classification accuracy of 86.3% was obtained with an ANN architecture (13:7:1) at learning rate of 0.01. While relatively better accuracy of 90.5% was observed with SVM to differentiate the diabetic and control subjects. The obtained results suggested that nonlinear HRV parameters show distinct changes due to diabetes and hence along with machine learning tools, these can be used for development of noninvasive low-cost real-time prognostic system in predicting diabetes using machine learning techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.