Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Coniacian quartz sandstones (Żerkowice Member, Rakowice Wielkie Formation) that crop out at quarries near Czaple-Nowa Wieś Grodziska (North Sudetic Synclinorium) contain a low-diversity assemblage of trace fossils: Gyrochorte isp., Ophiomorpha nodosa Lundgren, 1891, Ophiomorpha isp., Phycodes cf. curvipalmatum (Pollard, 1981), ?Phycodes isp., Planolites cf. beverleyensis (Billings, 1862), Thalassinoides paradoxicus Woodward, 1830 and ?Thalassinoides isp. Moreover, interesting compound burrow systems, here referred to as Thalassinoides-Phycodes cf. palmatus and ?Thalassinoides-Phycodes, were recognised at the Czaple Quarry. Additionally, ?Gyrochorte isp., Phycodes cf. flabellum (Miller and Dyer, 1878) and ?Treptichnus isp. were encountered at correlative levels in the Rakowice Małe Quarry. Some of these ichnotaxa have not been recorded previously from Coniacian sandstones of the Żerkowice Member. Additionally, in slabs of these sandstones, the gastropod Nerinea bicincta Bronn, 1836 and the bivalve Lima haidingeri Zittel, 1866 were found. These interesting finds, in particular the gastropods, were already noted from the study area in the first half of the twentieth century by Scupin (1912–1913). Ethologically, the trace fossil assemblage is represented by domichnia or domichnia/fodinichnia (Ophiomorpha, Thalassinoides), fodinichnia (Phycodes) and pascichnia (Gyrochorte, Planolites). The compound burrow systems (Thalassinoides-Phycodes) are interpreted as dwelling/feeding structures. The possible tracemakers are crustaceans (Ophiomorpha, Thalassinoides) or worm-like animals (annelids and other) (Planolites, ?Phycodes, Gyrochorte and ?Treptichnus). The assemblage of trace fossils is characteristic of the Skolithos ichnofacies and Cruziana ichnofacies, typical of shallow-marine settings. Ichnological studies, as well as the presence of accompanying fossils (bivalves, gastropods), confirm the palaeoenvironmental reconstruction of the Żerkowice Member sandstones by Leszczyński (2010). That author interpreted the Coniacian sandstones as bar and storm deposits laid down in a shallow epicontinental sea (mainly the foreshore-upper shoreface; up to the middle shoreface) under normal oxygenation and salinity, in soft substrate, above fair-weather wave base. The deposition of the Żerkowice Member sandstones is linked to a regression that started after uplift of the southeastern part of the North Sudetic Synclinorium.
EN
A new ichnogenus and ichnospecies Rosarichnoides sudeticus is proposed for a large, exceptionally well-preserved crustacean burrow, which has been found in the Upper Cretaceous (Coniacian) Quadersandstein of the North Sudetic Synclinorium (Czaple quarry). Some of its specimens have been assigned to Thalassinoides saxonicus (Geinitz, 1842). It is unbranched, a characteristic rosary-shaped trace fossil, which consists of alternating chambers (swellings) and constrictions. The burrow is without any wall and usually lack ornamentation and has a passive fill. It should be included in ophiomorphid group sensu Bromley (1996). This unique finding resembles modern crustacean burrows produced by shrimps or crabs. Additionally, Thalassinoides paradoxicus (Woodward, 1830), the starfish Astropecten scupini Andert, 1934, the inoceramids Inoceramus kleini Müller, 1888 and Inoceramus sp. were found in the same sandstones. The trace fossils are indicative of the archetypal Skolithos ichnofacies that is typical of foreshore to middle shoreface settings.
EN
Many well preserved trace fossils were found in erratic boulders and the fossils preserved in them, occurring in the Pleistocene glacial deposits of the Fore-Sudetic Block (Mokrzeszów Quarry, Świebodzice outcrop). They include burrows (Arachnostega gastrochaenae, Balanoglossites isp., ?Balanoglossites isp., ?Chondrites isp., Diplocraterion isp., Phycodes isp., Planolites isp., ?Rosselia isp., Skolithos linearis, Thalassinoides isp., root traces) and borings ?Gastrochaenolites isp., Maeandropolydora isp., Oichnus isp., Osprioneides kampto, ?Palaeosabella isp., Talpina isp., Teredolites isp., Trypanites weisei, Trypanites isp., ?Trypanites isp., and an unidentified polychaete boring in corals. The boulders, Cambrian to Neogene (Miocene) in age, mainly came from Scandinavia and the Baltic region. The majority of the trace fossils come from the Ordovician Orthoceratite Limestone, which is exposed mainly in southern and central Sweden, western Russia and Estonia, and also in Norway (Oslo Region). The most interesting discovery in these deposits is the occurrence of Arachnostega gastrochaenae in the Ordovician trilobites (?Megistaspis sp. and Asaphus sp.), cephalopods and hyolithids. This is the first report of Arachnostega on a trilobite (?Megistaspis) from Sweden. So far, this ichnotaxon was described on trilobites from Baltoscandia only from the St. Petersburg region (Russia). Arachnostega on a trilobite (Asaphus), a cephalopod and hyolithids is from Russia or Estonia. Another interesting ichnotaxon is Balanoglossites, which also was encountered in the erratic boulders from the Ordovician Orthoceratite Limestone of Sweden. So far, this ichnotaxon was known only from Russia (St. Petersburg region). Some rare borings (e.g., Osprioneides kampto, ?Palaeosabella isp.) also were found in glacial erratics of Silurian stromatoporoids, excellent outcrops of which are located in Gotland (Sweden) and Saaremaa (Estonia). In addition, stromatoporoid/coral, coral/coral and some new fossil associations are reported. The material studied probably was transported from the N, the NE, and less commonly from the NW.
EN
Professor Józef Zwierzycki was born in1888in Krobia, a small town in Wielkopolska (Great Poland), then under Prussian domination. From 1909 till 1914, he studied mining engineering at the Mining Academy, and geology and palaeontology at the University of Berlin. After graduating and obtaining a doctorate degree in geology, he won the competition for a position of geologist in the Dutch Geological Survey in the Dutch East Indies. He left Europe just on the eve of the World War I. He worked on Java, Sumatra and New Guinea in very difficult field conditions, and his work included: geological and soil mapping, geological prospecting of mineral resources, studying unique palaeontological sites and many volcanoes. During 24 years of work on the Malay Archipelago, Józef Zwierzycki was employed as a "research-explorer", "inspector" and, finally, from 1933 till 1938, the Director of the entire Dutch Geological Survey in the Dutch East Indies. After being retired, he received the highest Dutch state award, the Cross of Oranje-Nassau Order for his scientific achievements and work in the Dutch East Indies. In 1938, Józef Zwierzycki, with all the family, returned to Poland. He got a new job in the Polish Geological Institute in Warsaw. After the outbreak of the World War II, he was responsible for securing the property, archives and collections of the Institute. Józef Zwierzycki was arrested and sent to Auschwitz in 1941. One year later, due to firm efforts made mainly by German geologists, he was released from Auschwitz and transported to Berlin, where as a prisoner, he worked for geological needs. In summer 1944, when he was escorted to the Carpathians, he made a bravura escape and hid in Kraków. With a help from his brother-in-low, Professor Kazimierz Maślankiewicz, he luckily hold out in the hiding place till the liberation of Kraków from German occupation. In May 1945, Józef Zwierzycki came to Wroclaw with a group of professors, mainly of Lvov University and Polytechnics, to secure the remnants of buildings and scientific collections of the high schools, left by Germans in the city. In the same year, he obtained a "habilitation" degree and in 1948 received the title of "ordinary professor". Józef Zwierzycki was an outstanding academic teacher with very wide geological knowledge and enormous professional experience, so he gave lectures in several subjects. The research interests of Professor Zwierzycki were, at that time, mainly connected with mineral deposits in SW Poland. Professor Zwierzycki prepared scientific background for prospection of copper deposits, and is considered as a co-discoverer of these deposits in Lower Silesia. Professor Józef Zwierzycki died in 1961. He is among the greatest Polish geologists of the 20th century.
PL
Profesor Józef Zwierzycki urodził się w 1888 roku w Krobi, małym wielkopolskim miasteczku, wówczas pod zaborem pruskim. W latach 1909-1914 studiował w Berlinie - górnictwo na Akademii Górniczej oraz geologię z paleontologią na uniwersytecie. Po uzyskaniu stopnia inżyniera górnika i doktoratu z geologii wygrał konkurs na posadę geologa-eksploratora w Holenderskiej Służbie Geologicznej w Indiach Holenderskich (dzisiejsza Indonezja), dokąd wyjechał w przededniu wybuchu I wojny światowej. Pracował w bardzo trudnych warunkach terenowych na Jawie, Sumatrze i Nowej Gwinei, sporządzając mapy geologiczne i glebowe, poszukując bogactw mineralnych, badając unikalne stanowiska paleontologiczne oraz liczne wulkany. W czasie 24 lat pracy na Archipelagu Malajskim był geologiem-eksploratorem, inspektorem, a w latach 1933-1938 Dyrektorem całej Holenderskiej Służby Geologicznej w Indiach Holenderskich. Po przejściu na emeryturę, za zasługi dla geologii Holandii, otrzymał najwyższe odznaczenie holenderskie, Order Oranje Nassau. W 1938 roku wrócił wraz z rodziną do Polski i podjął pracę w Państwowym Instytucie Geologicznym w Warszawie. Po wybuchu II wojny światowej pełnił obowiązki dyrektora Instytutu i ratował mienie, archiwa i zbiory geologiczne. W 1941 roku został aresztowany i osadzony w Auschwitz, skąd ponad rok później został zwolniony dzięki wstawiennictwu m.in. geologów niemieckich. Następnie przez dwa kolejne lata przymusowo pracował na rzecz geologii w Berlinie. 1 sierpnia 1944 roku zbiegł eskortującym go żołnierzom w Krakowie i w ukryciu, zorganizowanym przez swojego szwagra - profesora Kazimierza Maślankiewicza, dotrwał do zakończenia wojny. W maju 1945 r. przyjechał do Wrocławia w grupie lwowskich profesorów by zorganizować polskie szkolnictwo wyższe i zabezpieczyć poniemieckie zbiory naukowe. W tym samym roku zrobił habilitację, a w 1948 został profesorem zwyczajnym. Profesor Zwierzycki był wybitnym nauczycielem akademickim, który dzięki bardzo szerokiej wiedzy prowadził wykłady z wielu przedmiotów geologicznych. Powojenne badania naukowe Profesora Zwierzyckiego wiążą się głównie z tematyką złóż surowców mineralnych Dolnego Śląska. Wyznaczył podstawy teoretyczne poszukiwań złóż rud miedzi w południowo-zachodniej Polsce i w związku z tym jest uznany za współodkrywcę złóż miedzi na monoklinie przedsudeckiej. Profesor Józef Zwierzycki, który zmarł w 1961 roku, należy do grona największych polskich geologów XX wieku.
EN
The Middle Turonian sediments of the Nysa Kłodzka Graben (Bystrzyca Sandstone in the Stara Bystrzyca outcrop and the Długopole Sandstone in Długopole Górne Quarry) contain trace fossils, which include Curvolithus simplex, ?Macaronichnus isp., Ophiomorpha nodosa, Ophiomorpha isp., Palaeophycus tubularis, Thalassinoides cf. paradoxicus, T. suevicus and Thalassinoides isp. The assemblage of trace fossils points to the proximal Cruziana ichnofacies, that characterizes the distal lower shoreface and the archetypal Cruziana ichnofacies, typical of upper offshore settings. The trace fossils evidence implies that sedimentation took place in a shallow basin with periods of a sudden sediment input, good oxygenation and normal salinity. The Bystrzyca and Długopole sandstones are deposits of the shallow epicontinental sea that were deposited between the fair-weather and storm-wave base, in the distal lower shoreface–upper offshore setting. The Bystrzyca Sandstone is recognized as storm-originated deposits, whereas the Długopole Sandstone is probably the part of prograding “accumulation terrace”. The source of material for the sandstone was the East Sudetic Island and probably also the Orlica–Bystrzyca Uplift. The studied sandstones are related to a regression that started in the early/middle Middle Turonian and caused a relative uplift of the surrounding land.
EN
The following trace fossils have been recognised in the Lower Muschelkalk of Raciborowice Gorne (North Sudetic Synclinorium, SW Poland): Archaeonassa fossulata, Balanoglossites triadicus, ?Gastrochaenolites isp., Lockeia isp., Palaeophycus tubularis, Palaeophycus isp., ?Planolites beverleyensis, P. montanus, Planolites isp., ?Protovirgularia isp., Rhizocorallium commune var. auriforme, R. commune var. irregulare, R. jenense, Skolithos linearis, Thalassinoides suevicus and Trypanites weisei. Coprolites and an unidentified trace fossil A are also described. The trace fossils allow the discrimination of five ichnoassociations in the Raciborowice G1) Rhizocorallium- Pholeus, (IA 2) Rhizocorallium-Palaeophycus, (IA 3) Thalassinoides, (IA 4) Trypanites-Balanoglossites and (IA 5) Planolites-Palaeophycus. The Lower Muschelkalk succession was deposited on a shallow carbonate ramp affected by frequent storms. Deposition commenced with sedimentation in a restricted lagoon on the inner ramp with a short episode of sabkha formation. It continued on the middle and outer ramp and then on a skeletal shoal of the outer ramp and in an open basin. Ichnoassociation IA 5 is related to a maximum transgression that commenced with the deposition of the Spiriferina Bed and which probably marked the opening of the Silesian-Moravian Gate. The basin underwent two shallowing episodes, as evidenced by ichnoassociations IA 3-IA 4, resulting in the formation of hardgrounds. Bathymetric changes in the Raciborowice Gorne section correspond well with a general transgressive trend in the Germanic Basin.
PL
Laboratoria mają coraz większą świadomość konieczności sprawdzeń przyrządów pomiarowych. Znajduje to odzwierciedlenie w zainteresowaniu laboratoriów wzorcowaniem przyrządów pomiarowych, w tym także spektrofotometrów i wzorców spektrofotometrycznych. Wzorcowanie wzorców spektrofotometrycznych zwanych także filtrami wzorcowymi, wykonuje się metodą bezpośredniego pomiaru. Każdy filtr wzorcowy stosowany w spektrofotometrii ma wyznaczoną wartość widmowego współczynnika przepuszczania τ(λ) lub wartość gęstości optycznej widmowego współczynnika przepuszczania D(λ) przy określonych długościach fal. Wartości te wraz z wartościami niepewności rozszerzonej i współczynnikiem rozszerzenia k, podane są w świadectwie wzorcowania filtrów.
EN
Vertebrate remains, mostly fish teeth and scales, are described from the Lower Muschelkalk of Raciborowice Górne, North-Sudetic Basin, SW Poland. The assemblage occurs in dark grey organodetrital limestone of unit C. Vertebrate remains, represented mainly by vertebrate bones and coprolites, are also known from unit B. Five taxa of chondrichthyan teeth — Acrodus lateralis, Acrodus cf. lateralis, Acrodus sp., Palaeobates angustissimus, Palaeobates sp. and, for the first time from this region, two taxa of osteichthyan remains — teeth of Birgeria sp., scales from Gyrolepis sp. as well as scales from unclassified actinopterygians and enigmatic bones (fishes?) are described from the Lower Muschelkalk at Raciborowice Górne. Reptile teeth represent ing the Nothosauridae or Cymatosauridae have been found for the first time at this locality. They were discovered in the Bone Bed of unit C, that had previously only yielded fish teeth. The material collected has allowed reconstruction of the vertebrate as semblage of the Lower Muschelkalk of the North-Sudetic Basin. It has also helped to constrain reconstructions of the palaeoenvironment, sugesting that it represented a deepening lagoon. The assemblage has been correlated with age-equivalents from other regions of Europe, the faunas from the Holy Cross Mts. (Central Poland) being the closest analogy. The evidence indicates that, during the deposition of units Band C that, contain the vertebrate remains, connection with the Tethys Ocean was through the Silesian–Moravian and East Carpathian marine gateways.
EN
This paper describes and interprets a newly discovered Lower Coniacian (lower Upper Cretaceous) macro- and micro- fossil fauna (vertebrate and invertebrate remains) from sedimentary rocks of the Jerzmanice Zdrój region of the North Sudetic Basin of SW Poland. Several inoceramid bivalve taxa that previously were only known from other parts of the North Sudetic Basin were recovered from light grey, marly sandstones of Early Coniacian age. A fragment of ammonite was also discovered, as was a shark's tooth from the family Cretoxyrhinidae: this may be Cretoxyrhina mantelli Agassiz, 1843, a species not hitherto known from the Lower Coniacian (Emscherian sensu Scupin (1912-13)) of the North Sudetic Basin. Abundant foraminifers were observed in thin sections. The newly discovered inoceramid bivalves - Cremnoceramus deformis erectus Meek, 1877, Cremnoceramus waltersdorfensis waltersdorfensis Andert, 1911 and Inoceramus lusatiae Andert, 1911 - fit into the current biostratigraphic scheme for the region. The inoceramids can all be assigned to the Cremnoceramus deformis erectus Zone, which correlates with the Gavelinella moniliformis foraminiferal Zone and thereby confirms an Early Coniacian age. The Turonian-Coniacian boundary in the North Sudetic Basin can now be placed between the respective inoceramid zones of Inoceramus costellatus Woods, 1912 (actually Mytiloides costellatus Woods, 1912) and Inoceramus schloenbachi Böhm, 1911 (actually Cremnoceramus crassus crassus Petrascheck, 1903). The macrofossils found in the Jerzmanice section suggest that the host sediments were laid down in a Late Cretaceous epicontinental basin, under the North Sudetic Sea, that had deepened during the Early Coniacian. This interpretation agrees with the global bathymetric curve for the Late Cretaceous in Europe.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.