In parallel with the dynamic development of rail transport in terms of vehicle design, control systems, infrastructure issues, the development of processes and procedures in the area of safety management must also progress. This growing awareness was confirmed, among other things, by harmonising the content of the regulations on railway safety and interoperability, the safety certification of railway undertakings and the definition of the tasks and roles of national safety authorities. In effect, this was to enable the development of a single European railway area. An implementation tool that allows for a systematic approach to safety management processes and that enables the above requirements to be met is, among other things, RAMS analyses. A key step in the safety management process for specifying RAMS is hazard identification, which is particularly highlighted in PN EN 50126-2:2018 through the holistic model for risk assessment and control of railway system hazards (hourglass model). It places the hazard identification process in two stages, i.e. in the early development stage of the analysis (similar to other known risk management models) and in the hazard control stage. This positioning alone indicates the importance of the hazard identification process. On the comprehensiveness and detail of its implementation depends the validity of the final outcome of the RAMS analysis. The development of such a process for real technical facilities in a way that is consistent with the needs of RAMS analyses and, at the same time, ensures that satisfactory results of these analyses are achieved, has become the subject of this article.
W założeniach tereny przeznaczone na składowiska odpadów przeważnie usytuowane są poza granicami miast w miejscach stosunkowo słabo zaludnionych. Jednakże ze względu na gwałtowny rozwój urbanistyczny istniejące od lat składowiska, znacznie przybliżyły się do ich granic i stały się uciążliwym problemem okolicznych mieszkańców. Zmieniło się to radykalnie gdy ustawodawca zakazał składowania na składowiskach odpadów ulegających biodegradacji.
Każdy biogaz powstały w wyniku fermentacji substancji organicznych ma w swoim składzie siarkowodór, który jest substancją niepożądaną. Gaz ten wpływa destrukcyjnie na wszystkie elementy instalacji, a w przypadku, gdy biogaz z zawartością siarkowodoru zasila zespół prądotwórczy, może także negatywnie wpływać na silnik. Bezpośrednie działanie na podzespoły silnika można zauważyć tylko przy wysokich stężeniach siarkowodoru, natomiast przy niższych stężeniach spalanie siarkowodoru powoduje przede wszystkim zmianę własności oleju smarnego, a w szczególności jego pH oraz liczby TAN i TBN. Prawidło eksploatowany silnik napędzany biogazem, którego olej smarny nie ma przekroczonych parametrów dopuszczonych przez producenta, jest odporny na siarkowodór zawarty w biogazie. Należy jednak pamiętać, że siarkowodór zawarty w biogazie może skrócić żywotność oleju nawet czterokrotnie, co generuje znaczne koszty eksploatacji zespołów prądotwórczych.
Ciągły rozwój cywilizacyjny wymaga dostarczania coraz większej ilości energii, Wdrażanie polityki oszczędzania energii nie przynosi istotnych rezultatów, więc zaczynamy odczuwać jej istotne braki, a wraz z problemem dostępności wzrasta jej cena. Czynniki te spowodowały, że sięgamy po rozwiązania dotychczas pomijane, takie jak źródła ciepła nisko parametryczne, których niedawno w ogóle się nie eksploatowało. Pomimo, że technologia pompy ciepła znana jest od lat, to dopiero niedawno została rozpowszechniona i znalazła szerokie zastosowanie przesyłowe. Należy też dodać, że dzięki administracyjnemu zakwalifikowaniu ciepła pochodzącego z pomp ciepła do „energii zielonej”, ułatwiono podmiotom chcącym inwestować w ten rodzaj produkcji ciepła dostęp do funduszy oraz dotacji krajowych i unijnych.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.