An experimental investigation is carried out to examine the effects of various cutting parameters on the response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal rate (MRR) were carried out according to the Taguchi L27 orthogonal array (313) approach. The analysis of variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the objective of achieving a better surface finish (Ra) and a higher productivity (MRR). The results showed that the cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface roughness and material removal rate mathematical models. ANN provided prediction models with a precision benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information than ANN in terms of the impacts and contributions of the model terms.
The aim of the present work is to establish a new algorithm for the optimization of the design of water distribution networks. The proposed algorithm makes it possible to connect the nodes and the sources using the shortest path to obtain a final looped configuration. A novel method, the "minimal length algorithm", is proposed. It uses the advantages of existing methods and exceeds their limitations. Some of the well-known existing methods are the shortest path algorithm, the minimum spanning tree algorithm and a novel method published previously. The developed algorithm is implemented into a user-friendly interactive computer program which allows the design of looped systems with minimal length ensuring least cost, reliability of the network and hence the availability of water.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.