Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
A multi-level forestry model, which is not only to predict income, requires accurate and rapid information about its resources. Precisely determined parameters such as diameter at breast height (dbh), height, canopy closure and volume are essential for proper decision making and therefore for forest management. Typical methods of tree/forest measurement in Poland are based on statistical methods and define average stand parameters from surveys done on selected areas (grid of forest inventory plots). It has been shown by many authors that CIR images and airborne laser scanning (ALS) data are suitable for determining selected forest parameters (Dubayah, Drake 2000; Lefsky et al., 2002). The main issue with airborne laser scanning, for forests concerns the vertical structure (Hyyppä et al., 2006; Wężyk et al., 2008). Airborne images (photos or line scanner multi- or hyperspectral imagery), on the other hand, can deliver information about tree species and health conditions by means of interpretation and classification (Wężyk et al., 2003; Lillesand et al., 2007). Both types of data can be used for determining tree numbers, tree density and spatial arrangement (Brandtberg, Walter, 1998; Leckie et al., 2003; Wang et al., 2004; Koch et al., 2006). The number of trees in the forest unit changes over the time. The older the forest stand is, the fewer tree stems it has, and even if planted in a regular order, different habitat conditions and competition between them, lead to diversified spatial distribution of trees in the stand. The purpose of this study was to test the different approaches of determining the number of trees using ALS and true orthoimagery datasets and compare the results to a reference. The study transect was located in the central-west Poland, in the Milicz Forest District RDLP Wrocław (WGS84: 51°27' N; 17°12' E), covering approximately 3.2 ha. The area was selected from a homogeneous part of a subcompartment (236a) covered by Scots Pine forest (Pinus sylvestris L.). The age of the stand, according to Polish State Forest database (SILP/LAS), was 107 years, the mean height was 23 m and the dbh was 30 cm.
PL
Stosowany obecnie model leśnictwa wielofunkcyjnego wymaga aktualnej i dokładnej informacji o jego zasobach. Jednym z wielu ważnych parametrów drzewostanu jest liczba drzew i ich przestrzenne rozmieszczenie. Obie te cechy zmieniają się w czasie życia drzewostanu. Im starszy jest drzewostan tym mniej drzew posiada. Pomimo faktu, że drzewa sadzone są z reguły w regularnej więźbie, zróżnicowanie warunków siedliskowych oraz konkurencja pomiędzy drzewami prowadzi do niejednakowego przestrzennego rozmieszczenia drzew oraz zróżnicowania ich rozmiaru. Celem badań było okre ślenie liczby drzew w drzewostanie sosnowym (Pinus silvestris L.) na podstawie danych z lotniczego skaningu laserowego (ALS) oraz obrazu pozyskanego za pomocą skanera linijkowego (true ortho RGB/NIR). Analizy zostały przeprowadzone w wybranym transekcie 107 letniego drzewostanu na terenie nadleśnictwa Milicz. Jako danych referencyjnych użyto liczby drzew określonej na podstawie zwektoryzowanych koron. Dwie różne metody zostały zastosowane do automatycznego określenia liczby drzew i ich położenia. Pierwsza metoda, nazwana "GIS watershed" oparta była na modelach koron generowanych z danych ALS. Zastosowano różne algorytmy w celu znalezienia optymalnego modelu jak najdokładniej reprezentującego powierzchnię koron drzew. Druga metoda nazwana OBIA oparta była o segmentację oraz klasyfikację obrazu true ortho (R, G, B, NIR) i prowadziła do wykrycia tzw. hot-spot. Zastosowano również metodę łączącą dane lidarowe oraz true ortho (data fusion). Do porównania uzyskanych wyników zastosowano analizy przestrzenne. Wyniki wskazują że zarówno dane ALS jak i dane obrazowe mogą być użyte do określania liczby drzew w rębnym drzewostanie sosnowym. Dokładność wykrycia drzew wyniosła 67% dla metody pierwszej (ALS) oraz 74.5% dla metody drugiej (true ortho). Połączenie zestawów danych zaowocowało wynikiem równym 72.6%. Badania będą kontynuowane w celu poprawy rezultatów dla zastosowanych metod, również dla drzewostanów w innym wieku i o innym składzie gatunkowym.
PL
Technologie teledetekcyjne oraz systemy GIS osiągnęły obecnie poziom rozwoju umożliwiający pełna implementacje automatycznych metod klasyfikacji oraz procesów kontroli i aktualizacji zasobów kartograficznych będących w posiadaniu administracji publicznej. Dane teledetekcyjne pozyskiwane nowoczesnymi metodami takimi jak: lotnicze kamery cyfrowe, skanery hiperspektralne, LiDAR badz VHRS - pozwalają na poprawne skonstruowanie procesu wspomagania podejmowania decyzji na poziomie lokalnym i regionalnym takich jak np. miejscowe plany zagospodarowania przestrzennego. Ogromne zbiory danych (np. LiDAR, VHRS) muszą być coraz częściej poddawane automatycznym procesom ich przetwarzania. Obiektowo zorientowana analiza obrazu (ang. Object Based Image Analysis; akronim: GEOBIA) - zwana potocznie klasyfikacja obiektowa, wykorzystuje zaawansowane algorytmy segmentacji rastra. Rozstrzygają one o liczbie generowanych obiektów na podstawie wartości jaskrawości piksela oraz „właściwości geometrycznych” (np. kształtu, grupowania się pikseli w homogeniczne obiekty, zwartości, etc). W kolejnych krokach obiekty te są klasyfikowane na podstawie licznych zależności i właściwości, jak np. parametru homogeniczności czy stosunku długości granic do powierzchni (wykrywanie krawędzi, budynków, działek etc). Klasyfikacja obiektowa może przyjąć strukturę hierarchiczna, to znaczy raz sklasyfikowane obiekty mogą posłużyć do stworzenia nowego wyższego hierarchicznie poziomu. Taka metodyka pozwala na przygotowanie scenariuszy postepowania klasyfikacyjnego zapisywanych do plików zwanych protokołami w oprogramowaniu DEFNIENS. Nowatorskie podejście do kwestii klasyfikacji obrazu bez potrzeby wykorzystywania pól treningowych zostało już potwierdzone wieloma projektami naukowymi i ich wdrożeniami (Wężyk, de Kok, 2005; de Kok, Wężyk, 2006). W prezentowanej pracy do przeprowadzenia klasyfikacji wykorzystano 2 sceny IKONOS z dnia 25.06.2005 roku (łączny obszar 194,7 km2) oraz 1 scenę QuickBird z dnia 07.09.2006 roku (167,7 km2). Prace zostały zlecone przez Biuro Planowania Przestrzennego UM Krakowa w listopadzie 2006 roku. Obrazy VHRS poddano ortorektyfikacji (Aplication Master 5.0, Inpho) w oparciu o współczynniki RPC ale także punkty dostosowania GCP pozyskane z ortofotomap Phare 2001 oraz NMT przekazanego przez BPP UMK (Wężyk et al., 2006). Do analizy obrazów VHRS wykorzystano kanał panchromatyczny (PAN) oraz wielospektralne (MS) zakresy promieniowania. Wstępne przetwarzanie kanałów PAN polegało na zastosowaniu filtrów krawędziowych (np. Lee Sigma), w wyniku działania których otrzymano tzw. obrazy pochodne wykorzystane w procesie segmentacji. Inne obrazy biorące udział w tym złożonym procesie składającym się z 11 kroków to: poszczególne kanały MS (Blue, Green, Red, NIR), dla których wykonano analizę głównych składowych (ang. Principal Component Analysis), mapa ewidencyjna (obraz rastrowy) wykorzystywana w projekcie kartowania zieleni rzeczywistej Krakowa (służąca głównie klasyfikacji budynków przy wykorzystaniu PC3), rastrowa warstwa sieci dróg pochodząca z wektoryzacji ekranowej VHRS i z map ewidencyjnych. W toku uzgodnień z BPP UMK podjęto decyzje o przyjęciu dwóch poziomów hierarchicznych klas pokrycia terenu. Poziom 1 składał się z 9-ciu klas zajmujących odpowiednio: tereny zainwestowane – 17,42%, zieleń wysoka – 24,99%, zieleń niska – 44,31%, zieleń terenów sportowych oraz ogródków działkowych – 1,39%, zbiorniki wodne i rzeki – 1,94%, infrastruktura drogowa – 3,48%, hałdy + wysypiska + odsłonięta gleba – 0,84%, grunty orne i uprawy – 5,35% oraz cień – 0,28% obszaru badan. Trzy klasy poziomu 1, tj.: tereny zainwestowane, zieleń niska i zieleń wysoka) zdecydowano się zaprezentować na wyższym – 2 poziomie szczegółowości. Wraz z pozostałymi klasami poziom ten składał się łącznie z 22 klas. Osiągnięte rezultaty potwierdziły szerokie możliwości stosowania automatycznych metod OBIA bazujących na VHRS i innych informacjach pochodzących z systemów GIS oraz z zasobów geodezyjnokartograficznych w celu ich aktualizacji.
EN
Recent developments in Remote Sensing and GIS have reached maturity which allows to implement the research results into standardized process flows for updating and checking the municipality cadastral information. The database containing the city cadastre already handles data fusion methods itself. Available information considerably enhance information extraction from new data collections with high quality sensors such as LiDAR, photogrammetrical imagery and VHRS data. Huge amounts of available data must be processed in sequences to keep them handable. Transferable protocols for automatic handling of VHRS data can now be put into a full production process to assist the workflow of other image data from airborne platforms and integrate these GIS output into further cadastral GIS analysis. The data fusion within this project allows a highly detailed description of the city status-quo and the basis for change detection. Further these results are besides a very important archival inventory also a basis for decision support, now and in the future. The whole workflow was of a chain of previous research projects which were put into a commercial workflow. This study shows an experience report on, how the product chain was built-up and what type of products were delivered to the municipality of Krakow (Poland).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.