Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 61

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
Purpose: Modification of sintered iron with the addition of molybdenum and boron leads to the formation of boride phases that significantly impact the properties of the sintered materials. The paper aims to determine Fe-Mo-B phases that might be formed during the sintering of base powders. With EDS microanalysis, determining those phases in the microstructure is difficult since the B-Kα peak is extremely close to Mo-Mζ (only a 9.3 eV difference). Thus, diffraction techniques must be implemented to unambiguously define the phases occurring in the sintered samples (WDS and EBSD). Design/methodology/approach: The sintered samples were obtained from initial powders of Fe, Mo, and B that were mixed and compressed. The reducing hydrogen atmosphere was used to sinter green samples at 1200°C for 60 minutes. The obtained sinters were subjected to microstructural observations by scanning electron microscope, and some analyses (EDS/WDS and EBSD) were conducted, which led to the determination of phases present in the material. Findings: Based on the investigations conducted, iron, molybdenum, and molybdenum-iron borides have been reported. It is confirmed with the EBSD method that Fe2B, MoB and FeMo2B2 phases are formed in particles’ connection regions. Besides, the interparticle region, formed due to a liquid phase during sintering, is based on Fe-Fe2B eutectic. The microstructural observations prove that the amount of the liquid phase, and thus the size of the interparticle region, diminishes with increasing molybdenum content. It was also noted that the iron matrix (interior of former iron particles) is free from contributing elements coming from boron or molybdenum powders. Research limitations/implications: The application of the EDS method is limited in the case of measuring boron in Mo-containing alloys and phases. The EDS method does not have a sufficient energetic resolution to separate the B-Kα line from Mo-Mζ one. Thus, it must be complemented with WDS and EBSD in order to unambiguously determine the presence and localization of iron and molybdenum borides. Practical implications: It can be stated that WDS has sufficient energy resolution to separate B-Kα from Mo-Mζ emission lines. Therefore, WDS analysis is suitable for boride observation in sintered iron powders by constructing distribution maps of interparticle connection regions and precipitates. Besides, measurements by the EBSD method can be used to confirm the presence of Fe2B, MoB and FeMo2B2 phases. Originality/value: Determination of boron-containing phases in Fe-Mo-B sinters by means of diffraction methods.
EN
Selective laser melting is one of the additive manufacturing technologies that is used to produce complex-shaped components for applications in the automotive industry. The purpose of the changes in the design, technology, and material tests was to make a steering gear housing using the SLM method. The steering gear housing was produced by the pressure casting method using an AlSi9Cu3(Fe) alloy. The construction of this housing is adapted to the specifics of left-hand traffic. The change in technology was related to the change of the position of the steering system from right-hand to left-hand and the demand for a limited number of gear housings. It was necessary to make a virtual model of the housing on the basis of the part that was removed from the vehicle. In SLM technology, the AlSi10Mg aluminum alloy was used as a raw material in the form of CL 32Al gas-atomized powder. After the SLM process was completed, the housings were subjected to heat treatment. The AlSi10Mg alloy fabricated by the SLM method after heat treatment is characterized by good plasticity and an average value of tensile strength. The last stage was to check the geometry of the SLM housing with a 3D scanner. As a result, a map of the dimensional deviations from the nominal values was obtained. This data was used to modify the CAD model before the next fabrication process. The use of 3D printing technology allowed for the quick production of elements. The time to develop the technology and the production of the first two gear housings based on a 3D model was seven days.
3
Content available Plasma Coatings on Aluminium-Silicon Alloy Surfaces
EN
Plasma oxidation, similarly to anodic oxidation (anodizing), are classified as electrochemical surface treatment of metals such as Al, Mg, Ti and their alloys. This type of treatment is used to make surface of castings, plastically processed products, shaped with incremental methods to suitable for certain requirements. The most important role of the micro plasma coating is to protect the metal surface against corrosion. It is well known that coating of aluminium alloys containing silicon using anodic oxidation causes significant difficulties. They are linked to the eutectic nature of this alloy and result in a lack of coverage in silicon-related areas. The coating structure in these areas is discontinuous. In order to eliminate this phenomenon, it is required to apply oxidation coatings using the PEO (Plasma Electrolytic Oxidation) method. It allows a consistent, crystalline coating to be formed. This study presents the mechanical properties of the coatings applied to Al-Si alloy using the PEO method. As part of the testing, the coating thickness, microhardness and scratch resistance were determined. On the basis of the results obtained, it was concluded that the thickness of the coatings complies with the requirements of conventional anodizing. Additionally, microhardness values exceeded the results obtained with standard methods.
EN
The paper discusses issues related to the technology of melting and processing of copper alloys. An assessment was made of the impact of titanium and iron introduced in the form of pre-alloy - Ti73Fe master alloy on the microstructure and selected properties of pure copper and copper-silicon alloy. There are known examples of the use of titanium and iron additive to the copper alloy. Titanium as an additive introduced to copper alloys to improve their properties is sometimes also applicable. In the first stage of the study, a series of experimental castings were conducted with variable content of Ti73Fe master alloy entering copper in quantities of 5 %, 15 %, 25 % in relation to the mass of the metal charge. In the second stage, a silicon additive was introduced into copper in the amount of about 4 % by weight and 0.5 % and 1 % respectively of the initial Ti73Fe alloy. Thermodynamic phase parameters were modelled using CALPHAD method and Thermo-Calc software, thus obtaining the crystallization characteristics of the test alloys and the percentage of structural components at ambient temperature. Experiments confirmed the validity of the use of Ti73Fe master alloy as an additive. The pre-alloy used showed a favourable performance, both in terms of addition solubility and in the area of improvement of strength properties. Changes were achieved in the microstructure, mainly within the grain, but also in the developed dendrites of the solid solution. Changes occur with the introduction of titanium with iron into copper as well as to two-component silicon bronze.
EN
As part of the studies conducted in the field of broadly understood casting of non-ferrous metals, selected results on the impact of variable additions of copper and silicon in aluminium were presented. A series of melts was carried out with copper content kept constant at a level of 2% (1st stage) and 4% (2nd stage) and variable contents of silicon introduced into aluminium. The crystallization characteristics of the examined alloys and the percentage of structural constituents at ambient temperature were obtained by modelling the thermodynamic parameters of individual phases with the CALPHAD method. The microstructure of the obtained alloys was examined and microhardness was measured by the Vickers-Hanemann method. The alloy properties were assessed based on the results of mechanical tests, including ultimate tensile strength (UTS), hardness (BHN) and elongation (E). The machinability of the tested alloys was analyzed in a machinability test carried out by the Keep-Bauer method, which consisted in drilling with a constant feed force. The obtained results clearly indicate changes in the images of microstructure, such as the reduction in grain size, solution hardening and precipitation hardening. The changes in the microstructure are also reflected in the results of mechanical properties testing, causing an increase in strength and hardness, and plasticity variations in the range of 4 ÷ 16%, mainly due to the introduced additions of copper and silicon. The process of alloy strengthening is also visible in the results of machinability tests. The plotted curves showing the depth of the hole as a function of time and the images of chips produced during the test indicate an improvement in the wear resistance obtained for the tested group of aluminium alloys with the additions of copper and silicon.
EN
Fatigue investigations of two 4XXX0-series aluminum alloys (acc. PN-EN 1706) within a range of fewer than 104 cycles at a coefficient of cycle asymmetry of R = –1 were performed in the current paper. The so-called modified low-cycle test, which provided additional information concerning the fatigue life and strength of the tested alloys, was also performed. The obtained results were presented in the form of diagrams: stress amplitude σa – number of cycles before damage N. On the basis of the microscopic images of sample fractures, the influence of the observed casting defects on the decrease of cycle numbers at a given level of stress amplitude were analyzed. Based on the images and dimensions of the observed defects, stress intensity factor KI was analytically determined for each. Their numerical models were also made, and stress intensity factor KI was calculated by the finite element method (FEM).
EN
The ecological factor is very important in shaping properties of alloys. It leads to a limitation or elimination, from the surroundings, of harmful elements from the heavy metals group. The so-called eco-brasses group comprises common lead-free brasses containing 10 to 40% of zinc and arsenic brasses of a high dezincification resistance. Among standardized alloys, CW511L alloy ( acc. to EN standard) or MS-60 alloy (acc. to DIN) can be mentioned. Investigations were performed on two different kinds of metal charges: ingots cast by gravity and the ones obtained in the semi-continuous casting technology with using crystallizers. The casting quality was analysed on the basis of the microstructure images and mechanical properties. The investigations also concerned increasing the corrosion resistance of lead-free alloys. This resistance was determined by the dezincification tendency of alloys after the introduction of alloying additions, i.e. aluminium, arsenic and tin. The investigations focused on the fact that not only alloying additions but also the production methods of charge materials are essential for the quality of produced castings. The introduced additions of aluminium and tin in amounts: 0÷1.2 wt% decreased the dezincification tendency, while arsenic, already in the amount of 0.033 wt%, significantly stopped corrosion, limiting the dezincification process of lead-free CuZn37 brass. At higher arsenic contents, corrosion occurs only within the thin surface layer of the casting (20 μ).
EN
Investment casting technology that utilizes lost-wax casting is one of the most-important achievements of ancient society. In Lower Silesia, Poland (Grzybiany, Legnica county), a 7-6 BC casting workshop was discovered with numerous artifacts, confirming the existence of the manufacturing process of metal ornaments using ceramic molds. The paper presents the research of molds and casts from the Bronze and Early Iron Ages. Microscopic analyses of the casting molds were performed, along with radiographic and chemical composition tests of the artifacts (the latter employing the use of the X-ray fluorescence spectroscopy method). The clustering method was used for alloy classification. The microstructure was analyzed by means of Scanning Electron Microscopy with Energy Dispersive Spectroscopy. Conclusions from the research were utilized in further experiments.
EN
The casting workshop was discovered with numerous artifacts, confirming the existence of the manufacturing process of metal ornaments using ceramic molds and investment casting technology in Lower Silesia (Poland) in 7-6 BC. The research has yielded significant technological information about the bronze casting field, especially the alloys that were used and the artifacts that were made from them. Based on the analyses, the model alloys were experimentally reconstructed. Taking advantage of the computer-modeling method, a geometric visualization of the bronze bracelets was performed; subsequently, we simulated pouring liquid metal in the ceramic molds and observed the alloy solidification. These steps made it possible to better understand the casting processes from the perspective of the mold technology as well as the melting and casting of alloys.
EN
The publication presents the comparison of selected refining methods (gaseous and/or flux) based on mechanical properties of the obtained secondary silumin EN AC-AlSi7Mg0.3 (in accordance to the European Standard PN-EN 1706:2011). The point of reference was a similar primary alloy produced using pure batch materials. The mechanical properties measured in room temperature were used to calculate the materials quality index. The research showed, that properly carried out refinement process of secondary (recycled) alloys can bring their quality indexes close to those of their primary materials. The goal was to assess the efficiency of selected refining methods when applied to the examined group of casting silumins, by measuring the basic mechanical properties (in room temperature) before and after refining. The practical aspect was to choose an effective (ecologically, technologically and economically) method of refining of secondary EN AC-AlSi7Mg0.3 alloy used to cast car rims for JN METAL company in Ostowiec Świętokrzyski (Poland).
EN
Silicon bronzes are characterised by good mechanical properties and by high corrosion and mechanical wear resistance. The process of sleeve casting by means of the centrifugal casting with the horizontal axis of the mould rotation was analysed. The assessment of the influence of modification and centrifugal casting parameters on the microstructure and mechanical properties of alloys was carried out in the hereby work. Zirconium was applied as a modifier. Speed of rotation of the mould was the variable parameter of the centrifugal casting. The investigation results were summarised on the basis of the microstructure analysis and mechanical properties determination: UTS, proof stress, A10 and BHN. The experiment aimed at finding the information in which way the modification together with changing the pouring parameters influence the mechanical properties of the CuSi3Zn3FeMn alloy.
12
EN
High prices of tin and its limited resources, as well as several valuable properties characterising Cu-Sn alloys, cause searching for materials of similar or better properties at lower production costs. The influence of various nickel additions to CuSn10 casting bronze and to CuSn8 bronze of a decreased tin content was tested. Investigations comprised melting processes and casting of tin bronzes containing various nickel additions (up to 5%). The applied variable conditions of solidification and cooling of castings (metal and ceramic moulds) allowed to assess these alloys sensitivity in forming macro and microstructures. In order to determine the direction of changes in the analysed Cu-Sn-Ni alloys, the metallographic and strength tests were performed. In addition, the solidification character was analysed on the basis of the thermal analysis tests. The obtained results indicated the influence of nickel in the solidification and cooling ways of the analysed alloys (significantly increased temperatures of the solidification beginning along with increased nickel fractions in Cu-Sn alloys) as well as in the microstructure pattern (clearly visible grain size changes). The hardness and tensile strength values were also changed. It was found, that decreasing of the tin content in the analysed bronzes to which approximately 3% of nickel was added, was possible, while maintaining the same ultimate tensile strength (UTS) and hardness (HB) and improved plasticity (A5).
EN
Cast axes are one of the most numerous categories of bronze products from earlier phases of the Bronze Age found in Poland. They had multiple applications since they were not only used objects such as tools or weapons but also played the prestigious and cult roles. Investigations of the selected axes from the bronze products treasure of the Bronze Age, found in the territory of Poland, are presented in the hereby paper. The holder of these findings is the State Archaeological Museum in Warsaw. Metallurgical investigations of axes with bushing were performed in respect of the casting technology and quality of obtained castings. Macroscopic observations allowed to document the remains of the gating system and to assess the range and kind of casting defects. Light microscopy revealed the microstructure character of these relicts. The chemical composition was determined by means of the X-ray fluorescence method with energy dispersion (ED-XRF) and by the scanning electron microscopy with X-ray energy dispersion analysis in micro-areas (SEM-EDS). The shape and dimensions of cores, reproducing inner parts of axes were identified on the basis of the X-ray tomography images. Studies reconstructed production technology of the mould with gating system, determined chemical composition of the applied alloys and casting structures as well as revealed the casting defects being the result of construction and usage of moulds and cores.
EN
This article presents research the results of the mechanical properties at the ambient temperature of hypoeutectic cast silumin EN AC-AlSi7Mg0.3 (according to EN 1706:2011; analogic to alloy A356 according to AA – the Aluminum Association). As related to the commonly known and used process of immersion during quenching, the research also used a micro-jet system of cooling. After quenching, the experimental samples were also submitted to artificial aging in three different variations. The achieved results were compared with the mechanical properties of the alloy in the as-cast state. Samples from the experimental alloy were subjected to micro-jet cooling during quenching; in principle, they had a similar level of properties as related to the samples that were cooled by immersion; only in some cases did the micro-jet cooling give better results. Further works in the field should be aimed at constructing machines for micro-jet cooling with water pressure levels significantly higher than the typical pressure of community waterworks.
PL
W artykule zostały zaprezentowane wyniki badań podstawowych właściwości mechanicznych (UTS, YS, E, N, HB) w temperaturze pokojowej podeutektycznego siluminu odlewniczego EN AC-42100 (EN AC-AlSi7Mg0.3) (zgodnie z EN 1706:2011; analogia stopu A356 według Aluminium Association). W odniesieniu do powszechnie znanego i stosowanego zabiegu chłodzenia zanurzeniowego (I, ang. immersing) podczas przesycania, w badaniach wykorzystywano również mikrostrumieniowy (M, ang. micro-jet) system chłodzenia. Po przesycaniu – metodą chłodzenia zanurzeniowego lub mikrostrumieniowego – próbki doświadczalne poddawane były także sztucznemu starzeniu w trzech różnych wariantach: S1, S2 i S3. Uzyskiwane wyniki były porównywane z właściwościami mechanicznymi stopu w stanie po odlaniu (stan F, ang. fabrication). Próbki z doświadczalnego stopu poddane mikrostrumieniowemu chłodzeniu przy przesycaniu miały w zasadzie podobne właściwości mechaniczne w stosunku do właściwości próbek chłodzonych zanurzeniowo i tylko w niektórych przypadkach mikrostrumieniowe chłodzenie dawało lepsze wyniki. Dalsze prace w tym obszarze powinny dotyczyć konstruowania urządzeń do mikrostrumieniowego chłodzenia o ciśnieniach wody znacznie przewyższających ciśnienie sieci wodociągowej, tj. do poziomu nawet kilkuset barów.
EN
The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα – the equilibrium solidification temperature, Tmin – the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.
EN
The article presents chosen aspects of foundry engineering of the settlement dwellers, including the archaeometric characteristics and metal science analysis of the artefacts, as well as an attempted reconstruction of the production organization. Discovered in Szczepidło (Greater Poland), the foundry workshop is unique in Central European Bronze Age. This workshop foundry operated roughly XIV-XII Century BC. Its production is evidenced by the presence of markers of the whole production cycle: semi-finished and finished products, production waste, fragments of crucibles and casting ladles with traces of usage, and tools. On this basis the alloys and foundry technologies used have been described. The analysis of foundry technology of copper alloys in the settlement area was carried out by observing the surface and structure of the products, semi-finished artefacts and fragments of crucibles by applying optical microscopy (OM), confocal microscopy (CLSM) and X-ray radiography (RT). The investigations of compositions were made by means of the energy dispersive X-ray fluorescence spectroscopy (ED-XRF) and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDS).
EN
During excavation of the cremation cemetery of urnfield culture in Legnica at Spokojna Street (Lower Silesia, Poland), dated to 1100-700 BC, the largest - so far in Poland – a collection of casting moulds from the Bronze Age was discovered: three moulds for axes casting made out of stone and five moulds for casting sickles, razors, spearhead and chisels, made out of clay. This archaeological find constituted fittings of foundrymen’s graves. In order to perform the complete analysis of moulds in respect of their application in the Bronze Age casting technology analytical methods, as well as, computer aided methods of technological processes were used. Macroscopic investigations were performed and the X-ray fluorescence spectrometry method was used to analyse the chemical composition and metal elements content in mould cavities. Moulds were subjected to three-dimensional scanning and due to the reverse engineering the geometry of castings produced in these moulds were obtained. The gathered data was used to perform design and research works by means of the MAGMA5 software. Various variants of the pouring process and alloys solidification in these archaeological moulds were simulated. The obtained results were utilised in the interpretation of the Bronze Age casting production in stone and clay moulds, with regard to their quality and possibility of casting defects occurrence being the result of these moulds construction. The reverse engineering, modelling and computer simulation allowed the analysis of moulds and castings. Investigations of casting moulds together with their digitalisation and reconstruction of casting technology, confirm the high advancement degree of production processes in the Bronze Age.
EN
The research focuses on assessing the metal content, mainly copper, lead, iron and also silver in metallurgical slag samples from the area where historical metallurgical industry functioned. In the smelter located in Mogiła, near Krakow (southern Poland), whose operation is confirmed in sources from 1469, copper was probably refined as well as silver was separated from copper. Based on the change of chemical and soil phase content and also taking cartographic and historical data into account, considering the restrictions resulting from the modern land use the area was determined whose geochemical mapping can point to the location of the 15th century Jan Thurzo’s smelter in Mogiła near Krakow. Moreover, using the same approach with the samples of this kind here as with hazardous waste, an attempt has been made to assess their impact on the environment. Thereby, taking the geoenvironmental conditions into account, potential impact of the industrial activity has been assessed, which probably left large scale changes in the substratum, manifested in the structure, chemical content and soil phase changes. Discovering areas which are contaminated above the standard value can help to identify historical human activities, and finding the context in artefacts allows to treat geochemical anomalies as a geochronological marker. For this purpose the best are bed sediments, at present buried in the ground, of historical ditches draining the area of the supposed smelter. Correlating their qualities with analogical research of archeologically identified slags and other waste material allows for reconstructing the anthropopressure stages and the evaluation of their effects. The operation of Jan Thurzo’s smelter is significant for the history of mining and metallurgy of Poland and Central and Eastern Europe.
EN
This study characterizes the bronze jewellery recovered from the Lusatian culture urn-field in Mała Kępa (Chełmno land, Poland). Among many common ornaments (e.g. necklaces, rings, pins) the ones giving evidence of a steppe-styled inspiration (nail earrings) were also identified. With the dendritic microstructures revealed, the nail earrings prove the implementing of a lost-wax casting method, whereas some of the castings were further subjected to metalworking. The elemental composition indicates the application of two main types of bronze alloys: Cu-Sn and Cu-Sn-Pb. It has been established that the Lusatian metalworkers were familiar with re-melting the scrap bronze and made themselves capable of roasting the sulphide-rich ores. The collection from Mała Kępa has been described in terms of its structure and composition. The investigations were made by means of the energy dispersive X-ray fluorescence spectroscopy (ED-XRF), scanning electron microscopy (SEM) coupled with an energy dispersive X - ray analysis system (EDS) and optical microscopy (OM). In order to fingerprint an alloy profile of the castings with a special emphasis on the nail earrings, the data-set (ED-XRF, EDS) was statistically evaluated using multidimensional analyses (FA, DA).
EN
The study was conducted for two selected 7xxx series aluminum alloys according to PN-EN 573-3:2010 – Polish version. The analysis of ingots was carried out on 7003, 7003S and 7010, 7010K alloys with a similar ratio of zirconium content. Symbols S and K are our internal modifications, still compatible with the standard. The ingots were made by semi-continuous casting. Aluminum alloys of this series, with improved properties, are intended for plastic-processing. The aim of this publication is to show how the microstructure of ingots is being formed during semi-continuous casting. The chemical profiles of ingots were determined using optical emission spectroscopy. Chemical analysis in micro-areas with evaluation by scanning electron microscope SEM with EDS analyzer was performed and the distribution of chemical elements in the microstructures are also presented. An XRD detector was used to show specific phases in the alloys. The grains are formed in a particular way during crystallization. In the middle of the ingot – further away from the crystallizer – the grains are larger. Semi-continuous casting together with homogenization enables the production of ingots with uniform cross sections as can be seen in the paper.
PL
Badania prowadzono dla dwóch wybranych stopów aluminium serii 7xxx zgodnie z PN-EN 573-3:2010 – wersja polska. Ocenę wlewków prowadzono na stopach 7003, 7003S oraz 7010, 7010K o zbliżonej zawartości cyrkonu. Oznaczenia S i K to modyfikacja wewnętrzna, nadal zgodna z normą. Wlewki wykonane zostały na drodze odlewania półciągłego. Stopy aluminium tej serii, o podwyższonych właściwościach, przeznaczone są do przeróbki plastycznej. Celem publikacji jest pokazanie, w jaki sposób kształtuje się mikrostruktura wlewków podczas półciągłego odlewania. Profile chemiczne wlewków wykonano przy wykorzystaniu optycznej spektroskopii emisyjnej. Wykonano również badania mikrostruktury wraz z analizą składu chemicznego w mikroobszarach z wykorzystaniem mikroskopu skaningowego (SEM) z analizatorem EDS oraz zaprezentowano rozkład pierwiastków na mikrostrukturach. Do wskazania konkretnych faz w stopach zastosowano detektor XRD. Ziarna podczas krystalizacji wlewków kształtują się w charakterystyczny sposób. Średnica ziaren zwiększa się w kierunku środka wlewka, wraz z oddalaniem się od krystalizatora. Półciągłe odlewanie w połączeniu z homogenizacją umożliwia wykonanie wlewków o jednolitym przekroju poprzecznym, co zostało zaprezentowane w pracy.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.