Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Celem przeprowadzonych badań dla meloksykamu (MLX) było uzyskanie informacji o możliwych izomerach konformacyjnych oraz stabilności termicznej wybranych konformerów MLX. Obliczenia z wykorzystaniem teorii funkcjonału gęstości (DFT) wskazują na cztery możliwe izomery konformacyjne, które zostały porównane z eksperymentalnym widmem ramanowskim leku. Otrzymane wyniki wskazują, że konformer meloksykamu obserwowany w analizowanej próbce jest stabilny w badanym zakresie temperatur.
PL
The aim of the performed studies for meloxicam (MLX) was to obtain information about possible conformational isomerism and the thermal stability of the selected conformers of MLX. Density functional theory (DFT) calculations show four possible conformational isomers which are compared to the experimental Raman spectrum of the drug. The obtained results indicate that the conformer of meloxicam observed in the analyzed sample is stable within the investigated temperature range.
EN
Additive manufacturing is a technology that can be successfully used in pharmacy and medicine. One of the examples of products that can be additively manufactured are microneedle systems. The specificity of these products, which are used for transdermal drug delivery, makes additive manufacturing a perfect choice for related research. However, the dimensions of microneedles usually do not exceed 2 mm, which means that manufacturing them using the most widely available additive manufacturing method, Fused Deposition Modelling (FDM), is problematic. In this study, the authors decided to investigate the possibilities of manufacturing microneedle systems using the FDM method in such a way as to minimize or exclude the need for post-processing. Five types of microneedle geometries were tested in four sizes, examining how changing the values of FDM process parameters would affect the accuracy of reproducing the digital geometry of the microneedles. From the point of view of the application of microneedle systems, it is not only necessary to obtain the designed shape of the microneedles, but also to maintain their appropriate strength. The study presents the results of the bending and compression strength of microneedles made of polylactic acid.
EN
Purpose: Analgesic treatment with diclofenac deteriorates bone structure and decreases biomechanical properties. This bone loss has been though to be reversed by training. The impact of exercise on bone treated with diclofenac (DF) has reminded elusive. In the present study, we assayed the combined impact of exercises and DF on mouse femur. Methods: The femur samples we obtained from 30 days treated C57BL/6J female mice. The training group ran on a horizontal treadmill at 12 m/min by 30 min a day (5% grade/slope). The group of ten mice treated with DF received the drug subcutaneously every day (5 mg/kg of body weight/day). The combined group ran on the treadmill and obtained DF. After 30 days, we sacrificed mice and studied their femurs using microcomputed tomography (µCT), dynamic mechanical analysis (DMA) and nanoindentation. Results: We observed that treadmill running and DF decreased trabecular bone volume and mineral density. Combined effect of training and DF was not additive. A significant interaction of both parameters suggested protective effect of training on bone loss provoked by DF. The femur cortical bone shell remained untouched by the training and treatment. The training and the DF treatment did not alter the storage modulus E’ significantly. The unchanged storage modulus would be suggesting on the unaltered bone strength. Conclusions: We concluded that even relatively short time of training with concomitant DF treatment could be protective on trabecular bone. Although viscoelastic properties of the entire femur were not modulated, femur trabecular tissue was thinned by treatment with DF and protected by training.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.