Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Witamina C w medycynie i kosmetologii
EN
Ascorbic acid is one of the strongest antioxidants. It has a protective function against oxidative stress intracellularly. It fights free radicals and eliminates the effects of ultraviolet radiation. The human body is unable to synthesize vitamin C itself. Vitamin C meets supports the mechanism of removing toxins from the human body and has anticancer activity. Over the years, many studies have been carried out to confirm the beneficial effect of preventive and supportive action of cytostatics in the treatment of cancer. Clinical studies described in the study indicate that vitamin C used in combination with a cytostatic drug - gemcystabine, shows no side effects. Vitamin C applied topically on the skin shows a number of positive effects. Studies have shown that vitamin C accumulates in the deeper layers of the skin for about three days. Ascorbic acid has a protective effect against harmful ultraviolet radiation. Manufacturers of cosmetics often add ascorbic acid to cosmetics with sunscreens. In addition, vitamin C acts depigmenting. In order to increase the brightening effect, vitamin C is often combined with glycolic acid or retinol. Ascorbic acid is also used in anti-aging preparations due to the high ability of collagen synthesis in the skin. In topical preparations, ascorbic acid has hydrophilic properties - it is soluble in water and insoluble in fats. Hydrophilic ascorbic acid in synergy with lipophilic tocopherol reduces cell apoptosis and thymine dimer formation. Its stability improves the presence of stabilizing antioxidants, such as vitamin E and ferulic acid. For the preparation to retain its properties, it should be protected from light and oxygen. The development of biotechnology allows the closure of a micronised vitamin C in nanosomes and liposomes, which increases the ability to penetrate deep into the skin. A number of vitamin C derivatives such as ascorbyl tetrapalmitate and ascorbyl phosphate magnesium help achieve the desired results in topical application.
EN
Microbial virulence is the ability of pathogen to penetrate, replicate, multiplícate and, as a consequence, damage the cells of the infected organism. In recent years, rapid progress in bacterial genome sequencing has led to the discovery and characterization of many new virulence factors. One of the many mechanisms of bacterial virulence is the activity of bacterial kinases and phosphatases. These enzymes phosphorylate and dephosphorylate various amino acid residues in proteins, most commonly serine, tyrosine and threonine. Reversible phosphorylation and dephosphorylation can control the activity of target proteins, either directly, by inducing conformational changes in proteins, or indirectly, by regulating protein-protein interactions. Due to the increasing antibiotic resistance, new substances that could be used to treat diseases caused by resistant bacterial strains are sought. One of the possibilities seems to be the inhibition of bacterial tyrosine phosphatases. Phosphorylation of proteins containing tyrosine residues is a key post-translational modification that controls the numerous cellular functions in bacteria. So far, many tyrosine phosphatases have been found to be responsible for the virulence of various bacterial strains. Many bacterial species use protein tyrosine phosphatases activity in host-pathogen interaction, by affecting signalling pathways and subsequent induction of the infection process. Many studies are devoted to the search for tyrosine phosphatases inhibitors in the context of possible support of the current antibacterial treatment. This article presents a review of reports on bacterial virulence factors-protein tyrosine phosphatases as potential therapeutic targets.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.