Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Hybrid in-beam PET/Compton camera imaging currently shows a promising approach to use of the quasi-real-time range verification technique in proton therapy. This work aims to assess the capability of utilizing a configuration of the Jagiellonian-positron emission tomography (J-PET) scanner made of plastic scintillator strips, so as to serve as a Compton camera for proton beam range verification. This work reports the production yield results obtained from the GATE/Geant4 simulations, focusing on an energy spectrum (4.2-4.6) MeV of prompt gamma (PG) produced from a clinical proton beam impinging on a water phantom. To investigate the feasibility of J-PET as a Compton camera, a geometrical optimisation was performed. This optimisation was conducted by a point spread function (PSF) study of an isotropic 4.44 MeV gamma source. Realistic statistics of 4.44 MeV PGs obtained from the prior step were employed, simulating interactions with the detector. A sufficient number of detected photons was obtained for the source position reconstruction after performing a geometry optimisation for the proposed J-PET detector. Furthermore, it was demonstrated that more precise calculation of the total deposited energy of coincident events plays a key role in improving the image quality of source distribution determination. A reasonable spatial resolution of 6.5 mm FWHM along the actual proton beam direction was achieved for the first imaging tests. This preliminary study has shown notable potential in using the J-PET application for in-beam PET/Compton camera imaging at quasi-real-time proton range monitoring in future clinical use.
EN
The modular J-PET scanner, comprising 24 compact and versatile modules, each consisting of 13 plastic strips with four SiPM detectors at the ends, represents a powerful tool for clinical applications in nuclear medical imaging. This study presents preliminary results from the exploration of simultaneous dual-isotope imaging using the modular J-PET system. Our approach involved two isotopes: 68Ge, characterized by a ringlike shape, and 22Na, exhibiting a point-like shape. The imaging was based on double-coincidence and triple-coincidence events. In the double coincidence case, both isotopes contributed comparably, whereas in the triple coincidence case 22Na dominated due to the prompt gamma being emitted with 100% of positron emissions, unlike 68Ga, where the prompt gamma was emitted in only 1.3% of cases after positron emission. In this work we present direct 2γ images determined for two-signal events and images for three-signal events, with two signals from annihilation photons and one from a prompt gamma. These results showcase the preliminary findings from simultaneous dual-isotope imaging of 68Ga and 22Na isotopes using the modular J-PET scanner, which will be presented and discussed.
EN
Dose delivery in proton beam therapy requires significant effort for in vivo verification. PET is considered as one of the most precise methods for such verification using short- -lived radionuclides. One of the newer approaches in proton therapy is based on FLASH therapy, when a 40-60 Gy absorbed dose could be delivered in millisecond time intervals. For this very promising type of therapy a very important task is to reliably identify the beam stopping position within the corresponding organ with a tumor in the patient’s body. This could be done if the beam proton energy in the body is still above the threshold of the corresponding nuclear reaction, in the outgoing channel of which will be produced positron-emitting nuclei. In this work we consider the production of oxygen radionuclides emitting positrons 14O (the half-life 70.6 s) and 15O (the half-life 122.2 s). Using the TALYS code, we calculated cross sections of proton-induced nuclear reactions on 14N and 16O, leading to the formation of 14,15O with the application of a well- -working optical model. In addition, we calculated total gamma-production and average gamma-emission energy for incident proton energy 150 MeV.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.