This paper presents the results of tests of a model semi-passive RFID identifier system from the point of view of efficiency of energy harvesting from teletransmission systems. The previously developed assumptions and guidelines for the concept of implementation of a harvester system applied in individual solutions, as well as the structure of the identifier operation algorithm adopted in these solutions (otherwise known – in the broader meaning of the term – as the scenario of operation of the identifier system) were taken into account in the conducted research. The efficiency of energy recovery and conditioning from electromagnetic environment was verified for the model RFID identifier.
When implementing energy saving measures, the key is the correct choice of thermal insulation materials, the main characteristic of which is the thermal conductivity coefficient. Missing part of the data, which may occur during investigation of materials in natural conditions, can lead to incorrect determination of the corresponding characteristic, which negatively affects the effectiveness of the implemented measures and energy saving. Therefore, reconstruction of the missing data at the stage of preliminary processing of measured signals to obtain complete and accurate data when determining the thermal conductivity of thermal insulation materials will avoid this situation. The article presents the results of regression analysis of data obtained during express control of thermal conductivity of thermal insulation materials based on the local thermal impact method. Regression models were built for signal reconstruction with 10%, 20% and 30% missing data, using which a relative error of determination the thermal conductivity coefficient of less than 8% was obtained. This is acceptable for express control of thermal conductivity and indicates the correctness of data restoration in this way. In addition, an algorithm is provided for determining signal stationarity, which allows to reasonably reduce the duration of each material with a given level of permissible error.
The schematic diagrams of the temperature measuring device based on transistor structures are presented in the paper. The temperature dependence of collector current without and with linearization of the conversion function is analysed. The linearization method based on compensation current formation is proposed. This allowed to reduce the temperature measurement error up to ± 0.006°C over the temperature ranges 40… 60°C and 60… 80°C and up to 0.08°C over the temperature range 10… 90°C.
PL
W artykule zostały przedstawione schematy miernika temperatury opartego na strukturach tranzystorowych. Została przeanalizowana zależność prądu kolektora od temperatury bez i przy zastosowaniu linearyzacji funkcji przetwarzania. Zaproponowano metodę linearyzacji opartą na formowaniu prądu kompensacyjnego, która pozwoliła zmniejszyć błąd pomiaru temperatury do ± 0,006°C w zakresach temperatury 40… 60°C i 60… 80°C oraz do ±0,08°C w zakresie 10… 90°C.
The work is devoted to the research and improvement of dynamic characteristics of thermoresistive transducers. The proposed structure of thermoresistive transducer provides the possibility of controlled heating, is implemented in microelectronic performance and can be integrated with the humidity sensor. The increase of speed of temperature measurement is achieved through the use of the track and hold circuit for the signal memorization of the transition process at a given instant with its additional amplification to the final signal value.
PL
Praca poświęcona jest badaniom i poprawie charakterystyk dynamicznych przetworników termorezystancyjnych. Zaproponowana struktura przetwornika termorezystancyjnego zapewnia możliwość kontrolowanego ogrzewania, jest realizowana w mikroelektronicznym wykonaniu i może być zintegrowana z czujnikiem wilgotności. Wzrost prędkości pomiaru temperatury uzyskuje się przez zastosowanie układu próbkowania i utrzymywania dla zapamiętywania sygnału procesu przejściowego w danej chwili z jego dodatkowym wzmocnieniem do końcowej wartości sygnału końcowego.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.