Construction of the orthodontic bracket promotes food accumulation, which is the cause of plaque formation. Modern trends in the design of adhesive orthodontic cements focus on the ability to release cariostatic fluoride ions. One of the methods is to incorporate the material with fluorapatite nanoparticles. The aim of the study was to determine the fluoride release capacity of orthodontic cement doped with nanosized fluorapatite in selected media and solution pH over a 12-week period.
The aim of this study was to examine a short-term fluoride ions release from selected materials – resin-modified glass ionomer –Vitremer (3M ESPE) and nanohybrid universal composite – Tetric EvoCeram (IvoclarVivadent). Release of fluoride ions [µg/mm2 /h] from Tetric EvoCeram and Vitremer into nine environments (artificial saliva – AS, deionized water and 0.9% NaCl) differing in composition of the solution and pH was determined. Six samples were prepared for each solution. In the short-term study, the measurements were taken after 1, 3, 24, 48, 72 and 168 hours. The cumulative values as well as levels of fluoride ions released at concrete time intervals were compared. Within 7 days (168 hours), both materials showed variable levels of fluoride ions release. The highest value of fluoride ions release from nanohybrid Tetric EvoCeram material was reported in deionized water (8) after 24 hours (1.550 ± 0.014 [µg/mm2 /h]) and the lowest value was read in the artificial saliva AS pH 7.5 (5) after 1 hour (0.022 ± 0.001 [µg/mm2 /h]). What’s more, the highest value of Frelease from Vitremer was found in deionized water (8) after 168 hours of immersion (24.021 ± 2.280 [µg/mm2 /h]) and the lowest value was in the artificial saliva AS (without Ca2+) pH 4.5 (6) (0.303 ± 0.249 [µg/mm2 /h]) after 168 hours. Cumulated release of F– after 7 days was notably higher from resin- modified glass ionomer material – Vitremer in all artificial saliva solutions (1–7) which imitated the environment of oral cavity. Therefore, we can assume that Vitremer has better remineralization potential and it may constitute a more effective method of tooth decay prevention.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.