Communication atmosphere based on emotional states of humans and robots is modeled by using Fuzzy Atmosfield (FA), where the human emotion is estimated from bimodal communication cues (i.e., speech and gesture) using weighted fusion and fuzzy logic, and the robot emotion is generated by emotional expression synthesis. It makes possible to quantitatively express overall affective expression of individuals, and helps to facilitate smooth communication in humans-robots interaction. Experiments in a household environment are performed by four humans and five eye robots, where emotion recognition of humans based on bimodal cues achieves 84% accuracy in average, improved by about 10% compared to that using only speech. Experimental results from the model of communication atmosphere based on the FA are evaluated by comparing with questionnaire surveys, from which the maximum error of 0.25 and the minimum correlation coefficient of 0.72 for three axes in the FA confirm the validity of the proposal. In ongoing work, an atmosphere representation system is being planned for casual communication between humans and robots, taking into account multiple emotional modalities such as speech, gesture, and music.
Quenching of various hydrocarbon flames using water mist, halon, and CO2 are studied applying non-equilibrium chemical reaction and flame code PREMIX from CHEMKIN package. It is found that the smaller size of water mist is the more effective among considered mists for the flame quenching and the evaporation of water mist is the main cause for the flame quenching.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.