Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers) and reusability.
EN
We have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO aerogels are promising materials as they possess good electrical conductivity (up to 100 S/m) and high surface area and porous structure (similar to 500 m(2)/g). The main goal was to obtain the material for electrodes in enzymatic biofuel cells. Thus, the proper modification was performed using free radical functionalization. It was shown that in order to synthesize rGO aerogels modified with anthracene, the proper order of reactions needs to be provided. The morphology of anthracene modified electrodes was analyzed using scanning electron microscopy, which confirmed their porous structure with non-uniform pore size distribution that ranged between few nanometers to microns. Data obtained by Raman spectroscopy confirmed the successful oxidation and reduction of analyzed materials. UV-Vis spectra revealed the presence of anthracene moieties in examined materials. We also recorded preliminary cyclic voltammograms that confirm an electric conductivity of the obtained structures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.