Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Rice is a major food crop globally, but yields are threatened by inefficient production practices. Laser land levelling is a technology that can enhance rice cultivars through optimised field conditions and water use efficiency. This study evaluated the effects of laser versus traditional land levelling on productivity and water savings of three rice cultivars in Egypt using a two-year split-plot field experiment with three replications. The land levelling methods (laser levelling, normal levelling, no levelling) were assigned to the main plots, and three Egyptian rice cultivars (‘Sakha 108’, ‘Giza 177’, ‘Giza 178’) were grown in the sub-plots. Data was collected on crop yield parameters, grain production, water use, and water use efficiency. Results showed that laser levelling increased plant height, flag leaf area, panicles per plant, filled grains per panicle, seed setting percentage, 1000-grain weight, and grain yield compared to traditional practices. The highest yields were obtained with laser levelling of ‘Sakha 108’ (12.22-12.31 Mg∙ha-1) and ‘Giza 178’ (12.20-12.29 Mg∙ha-1), while recorded 9.12-10.30 Mg∙ha-1 in control fields. Laser levelling reduced total water use by 1793 m3 ∙ha-1 without reducing yields. Among cultivars, ‘Sakha 108’ had the highest water use efficiency under laser levelling. Overall, laser land levelling increased rice productivity by enhancing yield components and water productivity. Adoption of laser levelling could increase rice yields sustainably with less water usage in Egypt and similar regions. These findings demonstrate the benefits of laser levelling for enhancing rice cultivation through improved agronomic performance and water savings.
EN
Plant growth-promoting rhizobacteria (PGPR) isolated from the rhizosphere soil of eight field crops at different locations in Egypt were identified. Rhizobacteria strains were identified as Bacillus endophyticus AW1 5, B. filamentosus EM9, ET3, Micrococcus luteus KT2, FW9, FC13, SaW4, Enterobacter cloacae SK18, Pseudomonas azotoformans TPo10, Citrobacter braakii TC3. All isolates solubilised insoluble phosphate and produced IAA, while only six were able to produce siderophores in vitro. Vegetative growth and yield of wheat cv. ‘Sakha 94’ were enhanced after the application of single inoculation of each isolate compared to the control. Grain yield was increased by 20.7-96.5% over the control according to bacterial isolates. Available phosphorus (P) and counts of total bacteria in soil were observed to be significantly increased in treatments than in control. After the wheat harvest, soil pH was observed to be decreased, and a highly significant negative correlation was observed between soil pH and the levels of available phosphorus. Significant increases in grain and straw yields, as well as uptake of nitrogen (N) and P by plants, were observed due to inoculation with PGPR isolates. Levels of photosynthetic pigments, free amino acids, free phenolics, and reducing sugars in flag leaf and spikes were significantly enhanced by the application of all PGPR isolates compared to the control. Thus this study identifies the PGPR isolates for the improvement of the growth, yield, and quality of wheat. The study may be also useful for field evaluation under different soils and environmental conditions before generalising PGPR isolates as biofertilisers.
EN
Global agriculture is a pivotal activity performed by various communities worldwide to produce essential human food needs. Plant productivity is limited by several factors, such as salinity, water scarcity, and heat stress. Salinity significantly causes short or long-term impacts on the plant photosynthesis mechanisms by reducing the photosynthetic rate of CO2 assimilation and limiting the stomatal conductance. Moreover, disturbing the plant water status imbalance causes plant growth inhibition. Up-regulation of several plant phytohormones occurs in response to increasing soil salt concentration. In addition, there are different physiological and biochemical mechanisms of salt tolerance, including ion transport, uptake, homeostasis, synthesis of antioxidant enzymes, and osmoprotectants. Besides that, microorganisms proved their ability to increase plant tolerance, Bacillus spp. represents the dominant bacteria of the rhizosphere zone, characterised as harmless microbes with extraordinary abilities to synthesise many chemical compounds to support plants in confronting salinity stress. In addition, applying arbuscular mycorrhizal fungi (AMF) is a promising method to decrease salinity-induced plant damage as it could enhance the growth rate relative to water content. In addition, there is a demand to search for new salt-tolerant crops with more yield and adaptation to unfavourable environmental conditions. The negative impact of salinity on plant growth and productivity, photosynthesis, stomatal conductance, and changes in plant phytohormones biosynthesis, including abscisic acid and salicylic acid, jasmonic acid, ethylene, cytokinins, gibberellins, and brassinosteroids was discussed in this review. The mechanisms evolved to adapt and/or survive the plants, including ion homeostasis, antioxidants, and osmoprotectants biosynthesis, and the microbial mitigate salt stress. In addition, there are modern approaches to apply innovative methods to modify plants to tolerate salinity, especially in the essential crops producing probable yield with a notable result for further optimisation and investigations.
EN
The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the morphological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.