Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 32

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
This paper presents results of experimental studies of tungsten samples of 99.95% purity, which were irradiated by intense plasma-ion streams. The behaviour of tungsten, and particularly its structural change induced by high plasma loads, is of great importance for fusion technology. The reported measurements were performed within a modifi ed PF-1000U plasma-focus facility operated at the IFPiLM in Warsaw, Poland. The working gas was pure deuterium. In order to determine the main plasma parameters and to study the behaviour of impurities at different instants of the plasma discharge, the optical emission spectroscopy was used. The dependence of plasma parameters on the initial charging voltage (16, 19 and 21 kV) was studied. Detailed optical measurements were performed during interactions of a plasma stream with the tungsten samples placed at the z-axis of the facility, at a distance of 6 cm from the electrode outlets. The recorded spectra showed distinct WI and WII spectral lines. Investigation of a target surface morphology, after its irradiation by intense plasma streams, was performed by means of an optical microscope. The observations revealed that some amounts of the electrodes material (mainly copper) were deposited upon the irradiated sample surface. In all the cases, melted zones were observed upon the irradiated target surface, and in experiments performed at the highest charging voltage there were formed some cracks.
EN
This paper present results of optical spectroscopy studies of interactions of intense plasma streams with a solid target made of carbon fibre composite (CFC). The experiments were carried out within the Rod Plasma Injector (RPI) IBIS facility. The optical measurements were performed first for a freely propagating plasma stream in order to determine the optimal operational parameters of this facility. Optical emission spectra (OES) were recorded for different operational modes of the RPI IBIS device, and spectral lines were identified originating from the working gas (deuterium) as well as some lines from the electrode material (molybdenum). Subsequently, optical measurements of plasma interacting with the CFC target were performed. In the optical spectra recorded with the irradiated CFC samples, in addition to deuterium and molybdenum lines, many carbon lines, which enabled to estimate erosion of the investigated targets, were recorded. In order to study changes in the irradiated CFC samples, their surfaces were analysed (before and after several plasma discharges) by means of scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) techniques. The analysis of the obtained SEM images showed that the plasma irradiation induces noticeable changes in the surface morphology, for example vaporisation of some carbon fi bres and formation of microcracks. The obtained EDS images showed that upon the irradiated target surface, some impurity ions are also deposited, particularly molybdenum ions from the applied electrodes.
3
Content available Preface
EN
The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF) experiments carried out within a modifi ed PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8) measuring channels. For discharges performed with the pure deuterium fi lling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the fi rst hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds) and appearing in different instants after the current peculiarity (so-called current dip) were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confi rmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray fi lms, showed the appearance of some fi lamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric), krypton (1.6% volumetric), or xenon (0.8% volumetric), decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes), which can be formed near the observed hot spots.
EN
In this note experimental studies of tungsten (W) samples irradiated by intense plasma-ion streams are reported. Measurements were performed using the modified plasma focus device DPF-1000U equipped with an axial gas-puffing system. The main diagnostic tool was a Mechelle®900 optical spectrometer. The electron density of a freely propagating plasma stream (i.e., the plasma stream observed without any target inside the vacuum chamber) was estimated on the basis of the half-width of the Dβ spectral line, taking into account the linear Stark effect. For a freely propagating plasma stream the maximum electron density amounted to about 1.3 × 1017 cm–3 and was reached during the maximum plasma compression. The plasma electron density depends on the initial conditions of the experiments. It was thus important to determine first the plasma flow characteristics before attempting any target irradiation. These data were needed for comparison with plasma characteristics after an irradiation of the investigated target. In fact, spectroscopic measurements performed during interactions of plasma streams with the investigated W samples showed many WI and WII spectral lines. The surface erosion was determined from mass losses of the irradiated samples. Changes on the surfaces of the irradiated samples were also investigated with an optical microscope and some sputtering and melting zones were observed.
EN
This invited paper considers reasons why exact measurements of fast electron and ion losses in tokamaks, and particularly i n a scrape-off-layer and near a divertor region, are necessary in order to master nuclear fusion energy production. Attention is also paid to direct measurements of escaping fusion products from D-D and D-T reactions, and in particular of fast alphas which might be used for plasma heating. The second part describes the generation of so-called runaway and ripple-born electrons which might induce high energy losses and cause severe damages of internal walls in fusion facilities. Advantages and disadvantages of different diagnostic methods applied for studies of such fast electrons are discussed. Particular attention is paid to development of a direct measuring technique based on the Cherenkov effect which might be induced by fast electrons in appropriate radiators. There are presented various versions of Cherenkov-type probes which have been developed by the NCBJ team and applied in different tokamak experiments. The third part is devoted to direct measurements of fast ions (including those produced by the nuclear fusion reactions) which can escape from a high-temperature plasma region. Investigation of fast fusion-produced protons from tokamak discharges is reported. New ion probes, which were developed by the NCBJ team, are also presented. For the fi rst time there is given a detailed description of an ion pinhole camera, which enables irradiation of several nuclear track detectors during a single tokamak discharge, and a miniature Thomson-type mass-spectrometer, which can be used for ion measurements at plasma borders.
EN
Soft X-ray imaging is a very useful diagnostic technique in plasma-focus (PF) experiments. This paper reports results of four experimental sessions which were carried out at the DPF-1000U plasma-focus facility in 2013 and 2014. Over 200 discharges were performed at various experimental conditions. Measurements were taken using two X-ray pinhole cameras with a line of sight perpendicular to the z-axis, at different azimuthal angles (about 20° and 200°), and looking towards the centre of the PF-pinch column. They were equipped with diaphragms 1000 μm or 200–300 μm in diameter and coated with filters of 500 μm Al foil and 10 μm Be foil, respectively. Data on the neutron emission were collected with silver activation counters. For time-resolved measurements the use was made of four PIN diodes equipped with various fi lters and oriented towards the centre of the PF-column, in the direction perpendicular to the electrode axis. The recorded X-ray images revealed that when the additional gas-puff system is activated during the discharge, the stability of the discharge is improved. The data collected in these experiments confi rmed the appearance of a filamentary fi ne structure in the PF discharges. In the past years the formation of such fi laments was observed in many Z-pinch type experiments. Some of the recorded X-ray images have also revealed the appearance of the so-called hot- -spots, i.e. small plasma regions of a very intense X-ray emission. Such a phenomenon was observed before in many PF experiments, e.g. in the MAJA-PF device, but it has not been investigated so far in a large facility such as the DPF-1000U. The time-resolved measurements provided the evidence of a time lapse between the X-ray emission from plasma regions located at different distance from the anode surface. The formation of distinct ‘hot-spots’ in different instants of the DPF-1000U discharge was also observed.
EN
In this note we describe measurements of ion beams emitted along the z-axis of the DPF-1000U facility operated at 23 kV, 334 kJ, and with the initial deuterium pressure of 1.6–2 hPa. The DPF-1000U device was recently renewed and equipped with a dynamic gas-puff valve placed inside the inner electrode. The investigated ions were recorded by means of ion pinhole cameras equipped with solid state nuclear track detectors of the PM-355® (PADC) type. The energy spectra of ions were determined using a Thomson spectrometer placed on the symmetry axis at a distance of 160 cm from the electrodes outlets. The ion images recorded during discharges performed under different experimental conditions show that the ion beams have a complex structure, usually in the form of a central bunch and an annular stream composed of many micro-beams. Energies of the registered deuterons have been in the range of 30–700 keV, while the fast protons (which originated from the hydrogen remnants) had energies in the range of 300–850 keV.
9
Content available Important problems of future thermonuclear reactors
EN
This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D) and tritium (T). There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI). There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic fi eld, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He) for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO).
EN
The results are presented of the optical spectra measurements for free plasma streams generated with the use of the modifi ed DPF-1000U machine. This facility was recently equipped with a gas injection system (the so-called gas-puff) placed on the symmetry axis behind the central opening in the inner electrode. The DPF-1000U experimental chamber was fi lled up with pure deuterium at the initial pressure of 1.6 or 2.4 mbar. Additionally, when the use was made of the gas-puff system about 1 cm3 of pure deuterium was injected at the pressure of 2 bars. The gas injection was initiated 1.5 or 2 ms before the triggering of the main discharge. The investigated plasma discharges were powered from a condenser bank charged initially to 23 kV (corresponding to the energy of 352 kJ), and the maximum discharge current amounted to about 1.8 MA. In order to investigate properties of a dense plasma column formed during DPF-1000U discharges the use was made of the optical emission spectroscopy. The optical spectra were recorded along the line of sight perpendicular to the vacuum chamber, using a Mechelle®900 spectrometer. The recent analysis of all the recorded spectra made it possible to compare the temporal changes in the electron density of a freely propagating plasma stream for discharges without and with the gas-puffing. Using this data an appropriate mode of operation of the DPF-1000U facility could be determined.
EN
Experimental simulations of International Thermonuclear Experimental Reactor (ITER) transient events with relevant heat load and particle load parameters have been performed with a quasi-stationary plasma accelerator QSPA Kh-50. Pulsed plasma guns PPA and IBIS were also used for comparative studies of surface damages appearing under varying plasma parameters and sorts of plasma ions. Particular attention is paid to the material erosion due to particles ejection from the tungsten surfaces both in the form of droplets and solid dust. Generation mechanisms of the dust in the course of ELM-like plasma impacts to the tungsten surfaces are discussed
EN
The paper presents experimental studies of the spatial-microstructure and temporal-characteristics of fast ion beams, which are emitted from high-current plasma-focus (PF) discharges performed within the PF-360 facility at National Centre for Nuclear Research (NCBJ) at Otwock/Świerk, Poland. The spatial structure of the ion beams was investigated by means of pinhole cameras equipped with solid-state nuclear track detectors shielded by absorption filters made of Al-foils of different thickness. In order to perform time-resolved measurements there were applied miniature scintillation detectors placed at different points of the ion-image plane.
EN
Experimental results are presented on the spatial structure and energetic characteristics of the fast ion beams produced by high-current discharges in a PF-360 device operated at the National Centre for Nuclear Research (NCBJ, Otwock/Świerk, Poland). The 105 kJ discharges were initiated at the initial deuterium pressure around p0 = 6 hPa and were powered from a 234 miF capacitor bank charged up to 30 kV. The spatial structure of the ion beams was recorded using pinhole cameras equipped with the solid-state nuclear track detectors of the PM-355 type, placed at two different angles (0 centigrade, 45 centigrade) relative to the discharge axis. The detectors were shielded by thin absorption filters made of pure Al foils of various thickness, which made it possible to record only ions with energies exceeding a chosen threshold value. Similarly as in other plasma focus (PF) experiments, energies of the emitted ions ranged from about 30 keV to about 3 MeV, i.e. they were much higher than the voltage applied to the electrodes. The recorded ion images showed a complex spatial structure of the fast ion beams, which consisted of many micro-beams of different energies. It is possible that these beams were emitted by various local micro-sources (e.g. plasma micro-diodes) the were formed inside the PF pinch column.
14
Content available Progress in MJ plasma focus research at IPPLM
EN
The results of studies of the plasma dynamics and neutron emission on a PF-1000 facility in the stage of pinch formation are presented. The measurements were performed using various modifications of the calibrated magnetic probes, 16 frame interferometry, silver activation counters and photomultiplier tube (PMT) neutron probes. The current measurements at a distance of 40 mm from the axis of the electrodes was measured. This dependence agrees well with the known scaling, Yn similar to I4. The evolution plasma density during pinch formation and a neutron emission were study.
EN
The paper presents recent research on characteristics of deuterium plasma streams generated within an RPI-IBIS (multi-rod plasma injector) facility, and optical spectra of plasma produced during the interaction of these streams with a tungsten target placed at a distance of 20 cm from the electrode outlets. Distinct WI- and WII-lines were recorded and the noticeable erosion of the W-target was observed for shots delivering more than 4 J/cm2 on the target surface.
EN
The PF-1000 plasma-focus facility in Warsaw, equipped with Mather-type coaxial electrodes working with a deuterium filling, was modified by the addition of a cathode disk in front of the anode front-plate at a distance of 3 cm. The plasma was diagnosed with temporal resolved interferometry and neutron diagnostics. The modified electrode configuration showed an increase of the current in the pinch phase and a decrease of the total neutron yield. The lower total neutron yield is caused by a lower energy of deuterons producing the observed neutrons and by a decrease of the velocity of transformations of the structures in the pinch column.
EN
This paper is based on an invited lecture given at the 10th International Workshop and Summer School "Towards Fusion Energy", which was held in Kudowa Zdrój, Poland, on June 12–18, 2011. A concise review is presented of the known experimental results on various plasma Z-pinch experiments supplied by high-voltage and high-current pulsed power generators. The most important issues and the most valuable results in this domain are highlighted. A broad class of various Z-pinches is considered, including simple inter-electrode discharges, single exploding wires, so-called X-pinches, cylindrical wire-array Z-pinches, radial wire-array discharges, conical wire-array experiments, and gas-puffed Z-pinches. Non-cylindrical Z-pinch discharges (often called plasma focus experiments) are also briefly characterized. The most important characteristics of each category of experiments are outlined. Particular attention is paid to fusion-oriented high-power Z-pinch experiments and the problems encountered in experiments with various sophisticated fusion targets. The main issues in the described Z-pinch experiments are identified. Finally, new trends in the dense Z-pinch research are described.
EN
Measurements of fast electrons, as performed during recent few years in small tokamaks, demonstrated that detectors based on the Cherenkov effect are very useful tools for such studies. The modernized measuring heads, which were equipped with miniature aluminum-nitride (AlN) radiators, enabled to determine locations and instants of the fast electrons emission and to estimate their energy. A comparison of four measuring channels showed that in ISTTOK the most important role was played by electrons of energy less than 90 keV.
EN
The optical spectroscopy in the visible range was used to determine properties of the dense magnetized plasma generated in the PF-1000, a 1 MJ plasma focus device operating in the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw, Poland. The experiments were performed in a vacuum chamber pumped out to the basic pressure of 2 x 10.5 hPa. The initial pressure of the pure deuterium filling was 2.9 hPa, while that of the deuterium--argon mixture was 1.07 hPa of D2 and 0.13 hPa of Ar. The deuterium-plasma emission contained the Balmer series (Dalfa, Dbeta and Dgamma) and a few distinct copper (Cu I) lines originating from the inner electrode material. The emission of the deuterium-argon plasma was rich in Ar II lines. The electron density (ne), averaged over line of sight, of order of 1016 cm.3 was calculated on the basis of the Dalfa and Dbeta emission only, because the D�ż line was strongly self-absorbed. A group of the Ar II spectral lines was used to estimate the excitation temperature (Texc = 3 eV) by means of a Boltzmann plot. Additionally, the temporal evolution of the electron density was determined on basis of the Stark broadening of the Dalfa and Dgamma lines.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.