Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available On the nature of the Teisseyre-Tornquist Zone
EN
The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the NW to the Black Sea in the SE. This tectonic feature defines a transition zone between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the SW. The TTZ is evident from the seismic data as a perturbation of the Moho depth as well as from magnetic and gravity anomaly maps and heat flow distribution. For over a century, the TTZ has been considered a fossil plate boundary of the EEC corresponding to the limit of early Palaeozoic palaeocontinent Baltica. The results of quantitative interpretation of gravity and magnetic data, integrated with data from the new reflection seismic profiles crossing the TTZ, indicate the continuation of the Precambrian basement of the EEC and its lower Palaeozoic cover toward the SW underneath the Palaeozoic Platform. Potential field modelling also suggests the occurrence of a crustal keel underneath the TTZ. These results imply the location of a Caledonian tectonic suture, marking the site of the collision between Avalonia and Baltica, not along the TTZ, but farther SW, in NE Germany and SW Poland.
EN
The Teisseyre-Tornquist Zone (TTZ), a transcontinental feature evident from magnetic and gravity maps, runs obliquely across the territory of Poland from the NW to SE and for a century it has been considered a deep tectonic boundary between the Pre- cambrian East European Platform (EEP) in the NE and the so-called young Palaeozoic Platform in the SW. The results of quantitative interpretation of gravity and magnetic data, integrated with data from new reflection seismic profiles crossing the TTZ, indicate the continuation of the Precambrian basement of the EEP and its lower Palaeozoic cover toward the SW underneath the Palaeozoic Platform of southwestern Poland. They also suggest the occurrence of a crustal keel beneath the TTZ. In the broader context ofEuropean geology, these results imply the location of a hypothetical Caledonian tectonic suture, marking the site of the collision between Avalonia and Baltica, not along the TTZ, but farther SW, in northern Germany and southwest Poland. Another implication is that the extensive Permian-Mesozoic sedimentary basins of western Poland are established above the attenuated margin of the Baltica palaeocontinent.
EN
Authorial comprehensive comments and explanations are given to some of the interpretations applied in the tectonic part of the newly published Geological Atlas of Poland (Nawrocki, Becker, 2017) that considerably change the hitherto generally accepted concepts. It should be, however, admitted that most of those "new’" solutions were already proposed in the past by other workers as hypotheses that could not have been tested in the then state of knowledge on Poland’s deep geology and scientific tools at hand. This has now changed with abundant new data obtained with modern seismic techniques and advanced methods of potential field modelling. Using those data, we justify the reasons for, among others, a significant eastward shifting the front of the Variscan Orogen in Poland andfor the accompanying change in position of the division line between the Precambrian and Palaeozoic platforms. We also show the rationale for accepting a far-reaching southwestward extent of the East European Craton’s crystalline basement below the Palaeozoic Platform and for reinterpretation of the Teisseyre-Tornquist Zone’s nature, together with the question of early Palaeozoic terranes in the TESZ and the situation of the Caledonian foredeep at the SW margin of the East-European Craton.
EN
The Pogórska Wola palaeovalley of combined tectonic and erosional origin dissects the Mesozoic floor of the Carpathian Foredeep Basin to a depth exceeding 1200 m. It formed during Paleogene times presumably due to fluvial and submarine erosion, concentrated along a local pre-Late Badenian graben system. All members of the foredeep’s Badenian-Sarmatian sedimentary fill attain distinctly greater values inside the palaeovalley than on top of elevated plateaux on palaeovalley shoulders. The fill comprises the Early to Late Badenian sub-evaporite Skawina Formation, the laterally equivalent Late Badenian evaporite Krzyżanowice and Wieliczka formations and the supra-evaporite Late Badenian to Early Sarmatian Machów Formation. Over the plateaux and in the highest palaeovalley segment, the evaporites are developed in the sulphate facies Krzyżanowice Formation, whereas in the lower palaeovalley segments chloride-sulphate facies evaporites of the Wieliczka Formation occur. The rock salt-bearing rocks are involved in thrusting and folding at the Carpathian orogenic front, which helps to assess the lateral extent of the Wieliczka Formation in seismic records. The deep palaeotopographic position of the evaporites inside the palaeovalley, combined with their lithological and sedimentary features, point to their formation via subaqueous gravity flow-driven redeposition of originally shallow-water evaporites, preferentially halite-bearing, presumably combined with precipitation from sulphate and chloride brines at the palaeovalley floor. Both the redeposited sediments and the brines must have come from the adjacent plateaux and from a thrust-sheet top basin, approaching from the south on top of the Cretaceous-Paleogene Carpathian flysch thrust wedge.
6
EN
The Certificate of a National Geopark was awarded to the Karkonosze National Park, along with its buffer zone, in September 2010. Geodiversity of the Karkonosze Mountains, subject to the comprehensive assessment in 2008-2009, resides mainly in the variety of geological, mineralogical and geomorphological phenomena. In addition, the legacy of mining and mineral prospecting is abundant. Many of the natural phenomena make the Karkonosze Mountains an exceptional area in Poland, and are of outstanding value if considered within the European context. The value of abiotic nature of the Karkonosze is promoted through multiple activities in the field of geotourism and ecological education, including construction of an extensive network of geosites, marked tourist paths, and educational trails with information boards. Further promotion of geodiversity of the Karkonosze is carried out in cooperation with the adjacent Krkonošský narodní park on the Czech side of the mountains, aiming at an establishment of a bilateral Polish-Czech Geopark Krkonoše/Karkonosze, within the framework of the European Geopark Network.
EN
The structure and evolution of the Polish part of the Sudetes is reviewed on the basis of published data and interpretations. The Sudetic segment of the Variscides and its adjacent areas were subjected to multi-stage accretion during successive collisional events that followed closure of different segments of the Rheic Ocean. Early Variscan deformations culminated in the Late Devonian due to docking of the Armorican terrane assemblage to the southern margin of Laurussia. The Variscan orogenic activity continued into the Carboniferous and was associated with a new collision and intense folding and thrusting, followed by abundant magmatism, gravitational collapse and resulting exhumation of deeply buried metamorphic complexes as well as by inversion of the foreland basin. In the Sudetes, Variscan tectonostratigraphic units are tectonically juxtaposed and often bear record of contrasting exhumation/cooling paths, constrained by palaeontological and geochronological data. This provides evidence for the presence of allochthonous units, of partly cryptic tectonic sutures and an of overall collage-type tectonics of that area. The main lithostratigraphical components distinguished within the Sudetes are: 1) non-metamorphic to metamorphosed Neoproterozoic igneous suites accompanied by volcano-sedimentary successions, 2) Late Cambrian granitoids gneissified during the Variscan orogeny, 3) variously metamorphosed Ordovician through Devonian volcano-sedimentary successions deposited in pre-orogenic extensional basins, 4) dismembered fragments of a Late Silurian ophiolitic complex, 5) Devonian to Lower Carboniferous sedimentary successions of a passive continental margin, 6) Carboniferous granitoids, and 7) clastic sediments of Devonian and/or Early Carboniferous intramontane basins. All these components are assembled to form part of the internal Variscan orogenic zone largely exposed within the area of the Bohemian Massif. A three-partite subdivision of the Sudetes proposed here reflects different timing of deformation and exhumation of the respective segments. The Central, West and East Sudetes were deformed and amalgamated during the Middle/Late Devonian, at the turn of the Devonian and Carboniferous and during Early Carboniferous, respectively. Problems in extending the classical tectonostratigraphic zonation of the Variscides into the Sudetes are explained as due to activity of Late Palaeozoic strike-slip faults and shear zones, disrupting and dispersing the initially more simply distributed tectonostratigraphic units into the present-day structural mosaic.
EN
Geologically, southwestern Poland is located between the Upper Elbe Fault Zone on the SW and the Dolsk Fault Zone on the NE. It comprises two major crustal blocks: the Lower Silesian Block and the South Wielkopolska Block separated by the narrow Middle Odra Horst. The Lower Silesian Block is principally subdivided into the Fore-Sudetic Block and the Sudetic Block. These blocks are further subdivided into several smaller tectonic units. Their boundaries and main features are briefly characterized. It is proposed here to initiate a discussion on internally coherent tectonic subdivision of the region, principles of such subdivision and due revision of the hitherto used terminology. The discerned tectonic units generally do not coincide with physiogeographic subdivision, thus it is not recommended to confuse the geographic and geologic regionalization.
EN
The Miocene Carpathian foredeep basin in Poland (CFB) developed in front of the Outer Carpathian fold-and-thrust belt, at the junction of the East European craton and the Palaeozoic platform. 3D seismic data, cores and well logs from Sokołów area (vicinity of Rzeszów) were used in order to construct new depositional model of the Miocene succession of the Carpathian foredeep. The gas-bearing Miocene infill of the CFB is characterized by a shallowing-upward trend of sedimentation and consists of hemipelagic, turbiditic and deltaic and nearshore-to-estuarine facies associations. Lowermost part of the Miocene infill seems to has been deposited from the North. Such direction of sediment supply was related to influence of existing relief of the pre-Miocene basement, where very deep (up to 1,5 km) erosional valleys cut into the pre-Miocene (Precambrian) basement due to inversion and uplift of the SE segment of theMid-Polish Trough are located. Upper part of theMiocene infill reflects sediment progradation from the South, from the Carpathian area into the foredeep basin. In the Rzeszów area existence of the so-called anhydrite-less island, i.e. relatively large area devoid of the Badenian evaporitic cover caused by the post-Badenian uplift and widespread erosion of evaporites,has been postulated for many years. Interpretation of 3D seismic data showed that such model should be abandoned. In the studied part of the CFB, Late Badenian evaporitic sedimentation was restricted to the axial parts of deep paleovalleys. Evaporites deposited in these valleys have been rarely encountered by exploration wells as such wells were almost exclusively located above basement highs separating erosional paleovalleys, hence giving incorrect assumption regarding regional lack of evaporitic cover. It is possible that in axial parts of these valleys important gas accumulations might exist, charged from the South and sealed by the Badenian evaporites.
EN
Tectonic deformation structures (folds, strike-slip, reverse and normal faults as well as joints) are reported here from the topmost part of the youngest, clayey sediments of the Carpathian foreland basin (Krakowiec clays, Sarmatian, Miocene), in a clay pit located at a village ofWylewa near Sieniawa. Our structural study has revealed several joint sets, accompanying products of intense folding and faulting, and defining a structural pattern that can be easily interpreted in terms of structures formed in a transpressive regime above strike-slip faults in the basement. The origin of these structures is ascribed to tectonic activity of the NW-SE-trending Ryszkowa Wola horst known to occur directly beneath the Wylewa clay pit, at a depth of c. 500 to 1300 m and to involve the basement and the lower part of theMiocene succession. The structural pattern in question most likely reflects a sinistral strike-slip displacement on sub-vertical boundary faults of the lowermost part of the horst. Undisputable effects of this strike-slip motion have been recently documented by other authors using 3D seismic data. The deformation structures at Wylewa must have resulted from a young, late to post-Sarmatian tectonic activity in the basement of the Carpathian foreland basin, probably reflecting an E-W to ENE-WSW directed regional shortening episode.
EN
TThe Polish Carpathian Foredeep Basin (PCFB) is the northern compartment of a foreland basin system that surrounds the Carpathian orogenic belt. The axis of the eastern part of the PCFB plunges gently towards SE, where the Miocene basin-fill succession exceeds 2000 metres in thickness. The Miocene succession developed in shallow marine ramp settings and is subdivided into 3 lithostratigraphic units: sub-evaporitic (onshore-to-nearshore), evaporitic, and supra-evaporitic (offshore-to-estuarine). The upper unit includes a siliciclastic series (Upper Badenian–Sarmatian), which constitutes the main segment of the succession. It displays an asymmetric, shallowing-up trend, expressed by the following sequence: hemipelagic-turbiditic-deltaic-low-energy nearshore-to-estuarine facies associations. Sediment accummulation in the basin has been significantly overprinted by higher-frequency cyclicity and encloses several genetic stratigraphic sequences bounded by MFS surfaces. An early phase of the basin development was characterised by high-rate subsidence and slow-rate sedimentation (hemipelagic facies). The turbiditic facies association identified within the Sieniawa–Rudka area resulted from southward progradation of a submarine fan/prodeltaic depositional system, mainly fed from the northern and north–western continental margins of the basin. An overall SE–ward palaeoslope inclination controlled the main phase of the deltaic progradation, which had gradually replaced the turbiditic systems. The late deltaic phase was characterised by ENE palaeotransport directions. The final phase of the basin filling took place in shallow-water, low-energy, nearshore-to-estuarine environments. In the early stage of the basin development, a complex system of NW–SE elongated basement pop-ups and flower structures in the Miocene succession were produced by reactivation and inversion of Mesozoic basement faults. The growth of these positive structures modified local subsidence patterns and affected the organisation of depositional systems of the siliciclastic series. A narrow elevation of the RyszkowaWola High (RWH) gradually grew above one of the pop-up structures. Complex structural-stratigraphic hydrocarbon traps developed along the RWH, due to interaction between the growth of local faults and the development of the successive depositional systems. Tidally-modified delta-top and estuarine facies are the most common hydrocarbon hosts within individual sequences of the „deltaic” segment of the succession..
12
Content available The Variscan Orogen in Poland
EN
The structure and evolution of the Polish part of the Variscan Orogenic Belt is reviewed, based on published data and interpretations. The Sudetic segment of the Variscides, together with adjacent areas, experienced multi-stage accretion during successive collisional events that followed the closure of different segments of the Rheic Ocean. In SW Poland, Variscan tectono-stratigraphic units are tectonically juxtaposed and often bear record of contrasting exhumation/cooling paths, constrained by palaeontological and geochronological data. This points to the collage-type tectonics of this area. A three-partite subdivision of the Sudetes is proposed that reflects timing differences in deformation and exhumation of the respective segments. The Central,West and East Sudetes were deformed and amalgamated during the Middle/Late Devonian, at the turn from the Devonian to Carboniferous and during Early Carboniferous times, respectively. Problems in extending the classical tectono-stratigraphic zonation of the Variscides into the Sudetes are discussed and attributed to activity along Late Palaeozoic strike-slip faults and shear zones, disrupting and dispersing the initially more simply distributed tectono-stratigraphic units into the present-day structural mosaic. Relationships between the Variscan Externides and the foreland basin are explored. Sediments of the foreland basin locally onlap the external fold-and-thrust belt that had undergone an earliest Carboniferous partial tectono-thermal overprint. During the Late Carboniferous, the SW part of the foreland basin was heavily affected by thrusting and folding and incorporated into the Externides. DuringWestphalian C to Early Permian times, localized folding and thrusting affected the distal parts of the foreland basin, probably in response to dextral transpressional movements along NW–SE trending basement faults.
EN
The Miocene Carpathian Foredeep Basin in Poland (CFB) developed in front of the Outer Carpathian fold-and-thrust belt, at the junction of the East European craton and the Palaeozoic platform. Within the upper Badenian through Sarmatian deposits of its eastern part, the CFB hosts numerous gas fields. The gas-bearing Miocene succession is characterised by a shallowing-upward trend of sedimentation and consists of offshore hemipelagic, turbiditic and deltaic and nearshore-to-estuarine facies associa-tions. The foredeep basin formation was largely controlled by the structure of its Neoproterozoic–Early Cambrian basement, especially by NW–SE trending faults inherited from Mesozoic tectonic history of SE Poland (subsidence and inversion of the Mid-Polish Trough). Several NW–SE-elongated, narrow basement pop-up structures developed in the northeasternmost part of the CFB, one of them being the Ryszkowa Wola block. The uplift of the pop-up basement block involved Miocene reactivation of older fault zones and resulted in the formation of a narrow, NW–SE elongated Ryszkowa Wola horst (RWH) above it, within the Miocene strata. A complex system of right-stepping, en-echelon, mainly normal faults of predominantly E–W trend, branching off from the NW–SE-striking boundaries of the RWH, has developed around and above the horst, leading to compartmentalisation of the Miocene succession into numerous, mutually displaced and rotated fault blocks. Such an association of deformation structures recognised from the 3D seismics was interpreted in terms of transpressive conditions with the horizontal maximum tectonic compression axis directed š E–W and a sinistral strike-slip displacements on NW–SE striking faults in the basement. The structural interpretation of the Ryszkowa Wola structure proposed here is in line with published results of analogue modelling of fault patterns in sediments overlying active strike-slip discontinuities in a rigid basement. The basement-cover interaction within the Ryszkowa Wola structure in the area of Sieniawa–Rudka was partly coeval with the Miocene deposition of the CFB infill. The uplift and horizontal displacements of the Ryszkowa Wola basement block modified the local subsidence pattern and the organisation of Miocene depositional systems. The syn-depositional strike-slip fault activity in the basement of the CFB resulted in differential movements and rotations of kinematically linked fault-blocks in the Miocene succession around and above the RWH, leading to the formation of numerous gas traps.
EN
This paper presents an insight into the geology of the area surrounding the ODDP proposed drilling site, and the structural development of the Carpathians in post-Palaeogene times. Since the deep drilling is proposed to be located in the Orava region of the Northern Carpathians, on the Polish-Slovak border, the structure and origin of the Neogene Orava Basin is also addressed in the paper. The outline of geology of the Carpathian Mountains in Slovakia and Poland is presented. This outline includes the Inner Carpathian Tatra Mountains, the Inner Carpathian Palaeogene Basin, the Pieniny Klippen Belt, the Outer Carpathians, the deep structure below the Carpathian overthrust, the Orava Basin Neogene cover, the Neogene magmatism, faults and block rotations within the Inner and Outer Carpathians, and the Carpathian contemporary stress field. The outline of geology is accompanied by the results of the most recent magnetotelluric survey and the detailed description of the post-Palaeogene plate tectonics of the circum-Carpathian region. The oblique collision of the Alcapa terrane with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and foreland basin. The northward movement of the Alpine segment of the Carpathian-Alpine orogen had been stopped due to its collision with the Bohemian Massif. At the same time, the extruded Carpatho/ Pannonian units were pushed to the open space, towards a bay of weak crust filled up by the Outer Carpathian flysch sediments. The separation of the Carpatho/Pannonian segment from the Alpine one and its propagation to the north was related to the development of the N-S dextral strike-slip faults. The formation of the West Carpathian thrusts was completed by the Miocene time. The thrust front was still progressing eastwards in the Eastern Carpathians. The Carpathian loop including the Pieniny Klippen Belt structure was formed. The Neogene evolution of the Carpathians resulted also in the formation of genetically different sedimentary basins. These basins were opened due to lithospheric extension, flexure, and strike-slip related processes. A possible asteno- sphere upwelling may have contributed to the origin of the Orava Basin, which represents a kind of a rift modified by strike-slip/pull-apart processes. In this way, a local extensional regime must have operated on a local scale in the Orava region, within the frame of an overall compressional stress field affecting the entire West Carpathians. Nevertheless, many questions remain open. Without additional direct geological data, which can be achieved only by deep drilling under the Orava Deep Drilling Project, these questions cannot be fully and properly answered.
PL
W grudniu 1999 Polska dołączyła do programu wierceń kontynentalnych - International Continental Scientific Drilling Program (ICDP). W ramach tego programu jest przygotowywany projekt głębokiego wiercenia w strefie kontaktu teranu Karpat wewnętrznych i płyty północnoeuropejskiej. Praca przedstawia zarys geologii Karpat na terenie Polski i Słowacji, ze szczególnym uwzględnieniem Tatr, paleogenu wewnątrzkarpackiego, pienińskiego pasa skałkowego, zachodnich Karpat zewnętrznych, podłoża nasunięcia karpackiego na południe od Krakowa, neogeńskiego wulkanizmu i budowy geologicznej niecki orawskiej. Wiercenie "Orawa" byłoby usytuowane w rejonie Jabłonki-Chyżnego na linii przekroju sejsmicznego CELEBRATION CEL01, jak również w niedalekim sąsiedztwie głębokiego przekroju geologicznego Kraków-Zakopane i na linii przekroju Andrychów-Chyżne. Przekroje Kraków--Zakopane i Andrychów-Chyżne wykorzystują szereg wierceń Państwowego Instytutu Geologicznego i PGNiG, a także badania sejsmiczne i magnetote-luryczne. Usytuowanie wiercenia w rejonie przygranicznym pozwoli na międzynarodową współpracę z geologami i geofizykami słowackimi. Wiercenie to ma na celu wyjaśnienie szeregu problemów badawczych. Jednym z nich jest zagadnienie młodych i współczesnych ruchów tektonicznych w Karpatach. Przez obszar karpacki przebiega granica europejskiego pola plam gorąca, wyznaczona neogeńskim wulkanizmem oraz rozkładem strumienia cieplnego. Na obszarze pomiędzy Górną Orawą a Górnym Śląskiem, linia graniczna łącząca neogeńskie wulkanity Zakarpacia z andezytami rejonu przypienińskiego i bazaltami Dolnego Śląska przecina skośnie nasunięcia jednostek fliszowych Karpat Zewnętrznych. Równocześnie w rejonie Orawy do pienińskiego pasa skałkowego skośnie dochodzi oś karpackiej, ujemnej anomalii grawimetrycznej, a podłoże skonsolidowane występuje na głębokości nie większej niż 6-9 km, a więc w zasięgu głębokiego wiercenia, co sugerują wyniki badań megnetotellurycznych (Żytko, 1999) i magnetycznych. Podniesienie to, przy generalnym zapadaniu podłoża platformy europejskiej pod Karpaty ku południowi, może bya spowodowane warunkami geotermicznymi, na skutek podnoszenia się astenosfery i występowania pióropuszy płaszcza. Pióropusze te mogą bya niezależne od karpackiej kompresji i subdukcji. Z piórpuszami tymi łączy się lokalna i regionalna ekstensja w warunkach megaregionalnej kompresji. Zjawiska tego rodzaju nie są jeszcze dokładnie poznane, aczkolwiek występują w kilku miejscach na świecie (np. Panteleria na Morzu Śródziemnym). Opracowanie zagadnienia roli pióropuszy płaszcza i określenie ich relacji do kolizji i subdukcji mają zasięg globalny, a ich wyjaśnienie w rejonie karpackim pozwoli na stworzenie uniwersalnego modelu ewolucji orogenów. Nie jest wykluczone, że mamy do czynienia z orogenezą "modyfikowaną" przez pióropusz płaszcza. Powstanie niecki Orawy i Podhala mogłoby więc mieć związek z riftingiem spowodowanym wpływem pióropuszy płaszcza na pograniczu dwóch płyt. Ryft ten jest obrzeżony między innymi wyniesieniami Babiej Góry i Orawskiej Magury. Z ryftem może być związany wulkanizm ukryty pod neogeńskimi utworami niecki orawskiej, a widoczny jako wysokooporowe ciała na profilach megnetotellurycznych. Tektonikę tego obszaru komplikuje występowanie uskoków przesuwczych o różnym przebiegu i orientacji i związane z nimi tworzenie się basenów międzyprzesuwczych typu pull-apart. Proponowane wiercenie przyczyniłoby się do uzyskania odpowiedzi na postawione wyżej problemy. Dla określenia dokładnej lokalizacji wiercenia i jego właściwej interpretacji geologicznej konieczne będzie wykonanie dodatkowych prac geofizycznych. Płytka sejsmika wyjaśniłaby zasięg utworów neogeńskich i pozycję pienińskiego pasa skałkowego pod utworami neogenu, zaś głęboka sejsmika, a zwłaszcza zdjęcie 3-D, przyczyni łaby się do lepszego rozpoznania tektoniki wgłębnej.
15
Content available remote Tektonika klinowa i strefy trójkątne : zarys problematyki
EN
The geometry and origin of specific tectonic structures occurring frequently at the fronts of foreland fold-and-thrust belts, are reviewed. These structures are created by the so-called wedge tectonics and include, among others, triangle zones and passive-roof duplexes. Their development is often facilitated by ductile lithological horizons (e.g. evaporites), along which regional and local detachments can nucleate. The products of wedge tectonics, being potential structural traps, are of major importance for hydrocarbon prospection.
EN
Pilot interpretation of selected new seismic profiles located within the Miocene Zgłobice Unit [Polish Outer Carpathians, Brzesko-Wojnicz area] allowed us to set up a new tectonic model of the Carpathian front in this area, in many respects different from the previously proposed ones. The central part of the Zgłobice Unit is interpreted as a passive-roof duplex defining a Miocene triangle zone. Above the duplex, in the roof of the triangle zone, major synclinal folds are recognised in the Miocene deposits and attributed to shortening in the hanging wall of the frontal roof backthrust of the duplex. Some of the inferred tectonic structures are classified as syn-depositional, coeval with sedimentation of the upper portion of the post-evaporitic siliciclastic foredeep succession [Grabowiec Beds]. Three main types of hydrocarbon traps are identified within the Zgłobice Unit and within the sedimentary infill of deep palaeovalleys developed within the Mesozoic basement. Because of pilot character of the interpretation here discussed, some of the solutions proposed in this paper should be regarded as working hypotheses, requiring further, more detailed studies. The latter should include detailed stratigraphic investigations in the key structural elements of the Zgłobice Unit, applying advanced techniques of seismic data processing [pre-stack depth migration, structural seismic modelling] and acquisition of shallow high-resolution seismic images. In order to better understand the geometry and kinematics of the interpreted linked thrust system, application of quantitative balancing techniques will be necessary.
PL
Pilotażowa interpretacja wybranych nowych profili sejsmicznych przecinających mioceńską jednostkę Zgłobic w rejonie Brzeska — Wojnicza, pozwoliła skonstruować nowy, pod wieloma względami odmienny od proponowanych do tej pory, model tektoniczny strefy brzeżnej orogenu karpackiego na tym obszarze. Centralną część jednostki Zgłobic zinterpretowano jako dupleks o pasywnym stropie, angażujący utwory mioceńskie i wypełniający wnętrze strefy trójkątnej. Powyżej dupleksu rozpoznano w utworach mioceńskich fałd, który utworzył się ponad frontalnym nasunięciem wstecznym strefy trójkątnej. Określono syndepozycyjny charakter części opisanych struktur tektonicznych; powstały one w trakcie sedymentacji wyższej części klastycznych utworów nadewaporatowych zapadliska przedkarpackiego (warstw grabowieckich). Wskazano na występowanie trzech zasadniczych typów pułapek dla węglowodorów, zlokalizowanych w obrębie sfałdowanych i ponasuwanych utworów mioceńskich jednostki Zgłobic oraz w obrębie wypełnienia osadowego dolin erozyjnych rozwiniętych w podłożu mezozoicznym. W związku z pilotażowym charakterem wykonanej interpretaćji, część wątków przedstawionego modelu strukturalnego należy traktować jako wstępne hipotezy robocze, wymagające dalszych szczegółowych badań w celu ich weryfikacji. Określono dalsze kierunki prac badawczych, które obejmują m,in. szczegółowe badania stratygraficzne datujące kluczowe elementy opisanych struktur, zaawansowane techniki przetwarzania danych sejsmicznych (migracja głębokościowa przed składaniem, strukturalne modelowania sejsmiczne) oraz płytkie, wysokorozdzielcze sejsmiczne prace pomiarowe. Dla bliższego zrozumienia mechanizmu powstawania opisanych struktur kompresyjnych w obrębie utworów mioceńskich konieczne jest ich ilościowe zbilansowanie.
EN
Pilot interpretation of selected new seismic profiles located within the Miocene Zgłobice unit (Polish Outer Carpathians, Brzesko — Wojnicz area) made it possible to set up a new tectonic model of the Carpathian front in this area, in many respects different from the previously proposed ones. The central part of the Zgłobice unit was interpreted as a passive-roof duplex defning a Miocene triangle zone. Above the duplex, in the roof of the triangle zone, major synclinal folds were recognised in the Miocene deposits and attributed to shortening in the hangingwall of the frontal roof backthrust of the duplex. Some of the inferred tectonic structures were classified as syn-depositional, coeval with sedimentation of the upper portion of the postevaporitic siliciclastic foredeep succession (Grabowiec beds). Three main types of hydrocarbon traps were identified within the Zgłobice unit and within the sedimentary infill of deep paleovalleys developed within the Mesozoic basement. Because of pilot character of the interpretation here discussed, some of the solutions proposed in this paper should be regarded as working hypotheses, requiring fiuther, more detailed studies. The latter should include detailed stratigraphic investigations in the key structural elements of the Zgłobice unit, applying advanced techniques of seismic data processing (pre-stack depth migration, structural seismic modelling) and acquisition of shallow high-resolution seismic images. In order to better understand the geometry and kinematics of the interpreted linked thrust system, an application of quantitative balancing techniques will be necessary.
PL
Pilotażowa interpretacja wybranych nowych profili sejsmicznych, przecinających mioceńską jednostkę Zgłobic w rejonie Brzeska - Wojnicza, pozwoliła skonstruować nowy, pod wieloma względami odmienny od proponowanych do tej pory, model tektoniczny strefy brzeżnej orogenu karpackiego na tym obszarze. Centralną część jednostki Zgłobic zinterpretowano jako dupleks o pasywnym stropie, angażujący utwory mioceńskie i wypełniający wnętrze strefy trójkątnej. Powyżej dupleksu rozpoznano w utworach mioceńskich fałd, który utworzył się ponad frontalnym nasunięciem wstecznym strefy trójkątnej. Określono syndepozycyjny charakter części opisanych struktur tektonicznych; powstały one w trakcie sedymentacji wyższej części klastycznych utworów nadewaporatowych zapadliska przedkarpackiego (warstw grabowieckich). Wskazano na występowanie trzech zasadniczych typów pułapek dla węglowodorów, zlokalizowanych w obrębie sfałdowanych i ponasuwanych utworów mioceńskich jednostki Zgłobic oraz w obrębie wypełnienia osadowego dolin erozyjnych rozwiniętych w podłożu mezozoicznym. W związku z pilotażowym charakterem wykonanej interpretacji, część wątków przedstawionego modelu strukturalnego należy traktować jako wstępne hipotezy robocze, wymagające dalszych szczegółowych badań w celu ich weryfikacji. Określono dalsze kierunki prac badawczych, które obejmują m.in. szczegółowe badania stratygraficzne datujące kluczowe elementy opisanych struktur, zaawansowane techniki przetwarzania danych sejsmicznych (migracja głębokościowa przed składaniem, strukturalne modelowania sejsmiczne) oraz płytkie, wysokorozdzielcze sejsmiczne prace pomiarowe. Dla bliższego zrozumienia mechanizmu powstawania opisanych struktur kompresyjnych w obrębie utworów mioceńskich konieczne jest ich ilościowe zbilansowanie.
EN
Pilot interpretation of selected new seismic profiles located within the Miocene Zgłobice unit (Polish Outer Carpathians, Brzesko - Wojnicz area) made it possible to set up a new tectonic model of the Carpathian front in this area, in many respects different from the previously proposed ones. The central part of the Zgłobice unit was interpreted as a passive-roof duplex defining a Miocene triangle zone. Above the duplex, in the roof of the triangle zone, major synclinal folds were recognised in the Miocene deposits and attributed to shortening in the hangingwall of the frontal roof backthrust of the duplex. Some of the inferred tectonic structures were classified as syn-depositional, coeval with sedimentation of the upper portion of the post-evaporitic siliciclastic foredeep succession (Grabowiec beds). Three main types of hydrocarbon traps were identified within the Zgłobice unit and within the sedimentary infill of deep paleovalleys developed within the Mesozoic basement. Because of pilot character of the interpretation here discussed, some of the solutions proposed in this paper should be regarded as working hypotheses, requiring further, more detailed studies. The latter should include detailed stratigraphic investigations in the key structural elements of the Zgłobice unit, applying advanced techniques of seismic data processing (pre-stack depth migration, structural seismic modelling) and acquisition of shallow high-resolution seismic images. In order to better understand the geometry and kinematics of the interpreted linked thrust system, an application of quantitative balancing techniques will be necessary.
PL
Sporządzono zestawienie wyników analizy strukturalnej danych upadomierza dla odcinka profilu otworu od 5521 do 2998 m, obejmującego utwory paleozoiczne pokrywy platformowej podłoża Karpat zewnętrznych, na które składają się węglanowe osady dewonu i karbonu dolnego (od głęb. 5521 do 4623 m), silikoklastyki dolnego karbonu i dolnego permu wraz z sekwencją węglonośną (do głęb. 4364 m) oraz sukcesja klastyczna permo-triasu (do głęb. 3027 m). Utwory paleozoiczne podłoża Karpat zostały sprofilowane upadomierzem 6-ramiennym, dostarczając danych o zróżnicowanej jakości (w przewadze średniej i słabej na około 60% długości profilu i dobrej do bardzo dobrej na około 40%). W całej przedjurajskiej (paleozoiczno-triasowej) części profilu, ograniczonej od góry walną powierzchnią niezgodności, dominują upady warstw ku SW, WSW i W pod zmiennymi kątami, od 5 do 30° (najczęściej rzędu 20°), generalnie wzrastające w głąb profilu. Do najważniejszych nieciągłości strukturalnych, dających się wyróżnić w profilu otworu na podstawie danych upadomierza, należy zaliczyć duże uskoki w serii węglanowej dewonu i karbonu na głębokości odpowiednio ok. 5290 i ok. 4950 m (o biegu N–S), prawdopodobne powierzchnie niezgodności kątowej na głębokości 4623 m oraz ok. 4500 m w utworach karbonu dolnego, duże uskoki o biegu E–W w utworach permu na głębokości ok. 3870 m i permo-triasu na głębokości ok. 3650 m oraz walną powierzchnię niezgodności w spągu jury/stropie permo-triasu na głębokości 2998 m.
EN
The paper contains a short overview of results obtained through structural analysis od dipmeter data from Tarnawa 1 well (Outer Carpathians). The investigations included the depth interval of 5521 to 2998 m, comprising the Palaeozoic strata of the platform cover in the substratum of the Outer Carpathian fold-thrust belt. The analysed succession is composed of Devonian and Lower Carboniferous carbonate rocks (from the bottom of the well at ca 5521 m, up to 4623 m), of Lower Carboniferous and Lower Permian siliciclastic rocks, including coal-bearing sequence (up to ca 4364 m), and of unseparated Permian-Triassic clastics (up to 2998 m). The Palaeozoic rocks of the Carpathian substratum were logged with 6-arm dipmeter tool, yielding data of variable quality (mostly average and poor along some 60 percent of the profile length and good to very good along the remaining 40 percent). The entire pre-Jurassic (Palaeozoic to Triassic) part of the well profile, bounded at the top by a major unconformity, is dominated by SW, WSW and W dip directions associated with variable dip angles (from 5 to 30°; most often some 20°) which, in general, increase downward (załl 1). The most important structural discontinuities recognizable in the dipmeter record, are major faults in the Devonian carbonate succession occurring at ca 5290 m and 4950 m (striking N-S), probable angular unconformities at 4623 m and ca 4500 m in the Lower Carboniferous rocks, major E-W faults in the Permian-Triassic sedimentary sequence at ca 3870 m, as well as the major unconformity at the top Permian-Triassic/base Jurassic (2998 m).
EN
The results of excavation works aimed at exposing the pre-Late Devonian unconformity in the vicinity of Kłodzko (Middle Sudetes, NE Bohemian Massif) are reported. The unconformity, first described by Bederke in 1924, provides important constraints on the timing of the exhumation of metamorphic complexes in the Sudetes. However, despite its importance, the unconformity is nowhere exposed at present (with the possible exception of the gabbro blocks at one locality - Mt.Wapnica in Dzikowiec), and has been inaccessible for direct observation for decades. Therefore, new excavation works were conceived and done to confirm the unconformity's existence and to describe details of the contact between the metamorphic basement and the Devonian sedimentary cover. Two localities, at Łączna and Gołogłowy, were selected for the excavation, based on detailed mapping and an EM31 conductivity survey. In both localities, four trenches, 2.5-3 m deep and up to 24 m long, were dug across the expected contact zone. Along the trenches in both sites the unconformity was excavated. At each site, the metamorphic rocks are in primary, sedimentary contact with the overlying basal sedimentary breccias and conglomerates. There is no evidence of tectonic disturbance at the contact. This angular unconformity must have formed during a relatively narrow time interval of c. 10-15 Ma, between the early Givetian and late Frasnian or Famennian. This timing is constrained by the late Frasnian?- to Famennian age of the limestones directly overlying the basal conglomerates and by the recently revised early Givetian age of a coralline fauna from the metamorphosed limestones of the Kłodzko Metamorphic Unit at Mały Bożków. The existence of this unconformity implies that at the turn of the Middle and Late Devonian times, freshly deformed and metamorphosed rocks were exhumed and onlapped by sediments of the Bardo sequence, which, eventually, became folded during latest Visean/Namurian times.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.