PASSEQ 2006-2008 (Passive Seismic Experiment in TESZ; WildePiórko et al. 2008) was the biggest passive seismic experiment carried out so far in the area of Central Europe (Poland, Germany, the Czech Republic and Lithuania). 196 seismic stations (including 49 broadband seismometers) worked simultaneously for over two years. During the experiment, multiple types of data recorders and seismometers were used, making the analysis more complex and time consuming. The dataset was unified and repaired to start the detection of local seismic events. Two different approaches for detection were applied for stations located in Poland. The first one used standard STA/LTA triggers (Carl Johnson’s STA/LTA algorithm) and grid search to classify and locate the events. The result was manually verified. The second approach used Real Time Recurrent Network (RTRN) detection (Wiszniowski et al. 2014). Both methods gave similar results, showing four previously unknown seismic events located in the Gulf of Gdańsk area, situated in the southern Baltic Sea. In this paper we discuss both detection methods with their pros and cons (accuracy, efficiency, manual work required, scalability). We also show details of all detected and previously unknown events in the discussed area.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper describes a temporary seismic project aimed at developing the national database of natural seismic activity for seismic hazard assessment, officially called “Monitoring of Seismic Hazard of Territory of Poland” (MSHTP). Due to low seismicity of Poland, the project was focused on events of magnitude range 1-3 in selected regions in order to maximize the chance of recording any natural event. The project used mobile seismic stations and was divided into two stages. Five-year measurements brought over one hundred natural seismic events of magnitudes ML range 0.5-3.8. Most of them were located in the Podhale region in the Carpathians. Together with previously recorded events this made it possible to conduct a preliminary study on ground motion prediction equation for this region. Only one natural event, of magnitude ML = 3.8, was recorded outside the Carpathians in a surprising location in central-west Poland.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Song Tranh 2 hydropower plant and the reservoir containing backed up water are located in the Quang Nam province (Central Vietnam). The region experiences unusual seismic activity related to the reservoir impoundment, with earthquakes of magnitude up to 4.7. In result of cooperation between the Institute of Geophysics, Vietnam Academy of Sciences and Technology and the Institute of Geophysics, Polish Academy of Sciences a seismic network has been built to facilitate seismic monitoring of the Song Tranh 2 area. The network, operating since August 2013, consists of 10 seismic stations. Here we show that the network is sufficient for advanced data processing. The first results of monitoring of the earthquake activity in Song Tranh 2 area in the period between 2012 and 2014, especially the completeness of catalogs, study and comparisons between water level and the seismic activity suggest direct connection between reservoir exploitation and anthropogenic seismicity.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
On 19 March 2013, a tremor shook the surface of Polkowice town where the Rudna Mine is located. This event, of ML = 4.2, was the third most powerful seismic event recorded in the Legnica Głogów Copper District (LGCD). Inhabitants of the area reported that the felt tremor was bigger and lasted longer than any other ones felt in the last couple of years. Analysis of spectral parameters of the records from in-mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. The location of the event was close to the Rudna Główna Fault zone; the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained as Full Moment Tensor from P-wave amplitude pulses of underground records and waveform inversion of surface network seismograms. The results from the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was complex rupture initiated as thrust faulting on an inactive tectonic normal fault zone. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The earthquake of magnitude ML= 3.8 (EMSC) took place on Fri- day, 6 January 2012, north-east of the town of Jarocin in Wielkopolska Region, Poland. The only historical information about past earthquakes in the region was found in the diary from 1824; apart of it, there was a seismic event noticed in the vicinity of Wielkopolska in 1606 (Pagaczewski 1982). The scope of this paper is to describe the 6 January 2012 event in view of instrumental seismology, macroseismic data analysis and known tectonics of the region, which should be useful in future seismic hazard analysis of Poland.