Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the scope of reduced resource consumption and CO2 emissions, lightweight structures in multi-material-design offer a high potential for use in aviation or automotive applications. Though, to take advantage of the specific structural and functional properties of the different materials of hybrid structures, it is necessary to provide adapted manufacturing and joining technologies. This article presents the development of a new thermoclinching joining process to produce hybrid structures with continuous fiber reinforced thermoplastic composites and metallic components. Based on the principles of staking and the classical clinching process, thermoclinching technology ensures element free and form-closed joints by plastic deformation of the reinforced thermoplastic component. To approve the technological concept of the thermoclinching process, prototypic joints with both reinforced and non-reinforced thermoplastics were produced and experimentally tested, revealing up to 50% higher failure loads of the reinforced joints. In order to understand the generated fiber reorientation during the thermoclinching process and its optimization, the produced joints were analyzed using non-destructive and destructive testing methods such as computed tomography scans and micrograph analysis. It was shown that parts of the textile reinforcement were purposefully relocated into the neck and head area of the joint and thus considerably contribute to the load carrying capacity of the joint. Process simulations are performed to predict the plastic deformation and the resulting fiber orientation during the joining process. Even now, it can be stated that without the necessity to apply any additional joining elements, the developed thermoclinching technology projects a high lightweight potential for future composite structures.
PL
W celu zmniejszenia zużycia energii i emisji CO2 coraz częściej projektuje się lekkie konstrukcje z wykorzystaniem materiałów z różnych grup, których potencjał predestynuje je do stosowania w przemyśle lotniczym i motoryzacyjnym. Jednak, aby wykorzystać wyjątkowe właściwości materiałów hybrydowych, konieczne jest zapewnienie odpowiednio zaprojektowanych metod wytwarzania i łączenia. W niniejszej pracy przedstawiono opracowanie nowego procesu łączenia materiałów pochodzących z różnych grup, np. tworzyw termoplastycznych wzmacnianych włóknami ciągłymi i metali. W oparciu o zasady spęczania i klasycznego procesu zaciskania technologia „thermoclinching” została opracowana w taki sposób, że zapewnia zamkniętą postać połączenia, wykorzystując odkształcenie plastyczne tworzywa termoplastycznego. W celu zweryfikowania koncepcji procesu „thermoclinching” wykonano złącza z tworzyw termoplastycznych zarówno wzmocnionych, jak i niewzmocnionych włóknami ciągłymi. W przypadku materiału wzmocnionego zaobserwowano o ponad 50% wzrost wartości obciążeń, potrzebnych do zniszczenia takiego połączenia, w porównaniu do termoplastu niewzmocnionego. W celu określenia sposobu przemieszczania się włókien podczas procesu „thermoclinching” wykonane złącza przebadano za pomocą zarówno niszczących, jak i nieniszczących metod badania materiałów, m.in. tomografii komputerowej i mikroskopii świetlnej. W pracy pokazano, że część wzmocnienia została celowo przesunięta do środkowej i dolnej części połączenia, przyczyniając się tym samym do zwiększenia nośności połączenia. Wykonano również symulacje komputerowe w celu przewidzenia odkształcenia plastycznego oraz przesunięcia wzmocnienia w trakcie procesu łączenia. Na podstawie przeprowadzonych badań można stwierdzić, że opracowana technologia „thermoclinching” pozwala na łączenie lekkich materiałów kompozytowych bez konieczności stosowania dodatkowych elementów łączących oraz ma wysoki potencjał aplikacyjny w perspektywie przyszłych zastosowań w technologiach materiałów kompozytowych.
PL
Coraz częściej w nowoczesnych strukturach lekkich, np. w budowie pojazdów, wykorzystuje się konstrukcje hybrydowe. Konstrukcje te, składające się z materiałów metalowych oraz anizotropowych materiałów kompozytowych, wymagają nowej koncepcji metody łączenia. W tym kontekście wyjątkowe znaczenie ma odpowiednie zaprojektowanie dopasowanego do obciążenia obszaru połączenia. Projektowanie zakładkowego połączenia nitowego zostało przedstawione za pomocą elementu konstrukcji karoserii samochodu osobowego. Projektowanie dopasowane do występujących obciażeń zostało pokazane z wykorzystaniem modelu symulacyjnego hybrydowego połączenia elementów CFRP i aluminium, który został opracowany i zweryfikowany praktycznie w Instytucie Konstrukcji Lekkich i Tworzyw Sztucznych (ILK) Technische Universität Dresden. Model ten bierze pod uwagę ekstremalne obciążenia termiczno-mechaniczne występujące w procesie wytwarzania, powstające ze względu na dużą różnicę we współczynnikach rozszerzalności cieplnej materiałów składowych. Wyniki obliczeń, jak również opracowany model cząstkowy MES mogły zostać zweryfikowane dzięki przeprowadzonym badaniom eksperymentalnym na specjalnie do tego celu przygotowanym demonstratorze CFRP/Al i pozwoliły na zaprojektowanie termicznie dopasowanych komponentów z CFRP. Ponadto, model cząstkowy jest możliwy do wykorzystania w realistycznej analizie wytężeniowej połączenia nitowego pomiędzy materiałem izotropowym a dowolnym materiałem anizotropowym uwzględniającym występujące obciążenia termiczno-mechaniczne. Jest również praktycznym narzędziem inżynierskim pozwalającym zaoszczędzić czas na modelowanie, obliczenia oraz przeprowadzenie większej ilości badań eksperymentalnych. Dodatkowo, opisana metodyka może być w przyszłości wykorzystana do przyspieszenia obliczeń innych rodzajów połączeń hybrydowych materiałów w konstrukcjach lekkich.
EN
Novel lightweight developments in automobile industry are increasingly completed as hybrid constructions. Modern hybrid concepts, including metallic materials and anisotropic composites require material adapted joining concepts. In this context a special importance is given to the load-adapted design of joining areas. The overlapping area design of blind rivet connections has been presented upon an example of a constructed element car body. This load adapted connection has been designed due to elaborated and practically validated simulation model. Load adapted design such as overlapping areas has been presented due to its own development, practically proofed simulation model of hybrid CFRP/Al shear-field, which are subjected to extreme thermo-mechanical loads for different thermal expansion coefficients during the painting process. Calculation results, and so that developed FE-submodel could have been verified on the basis of carried out experimental research on CFRP/AL-shear field and laid foundations for a design of CFRP-shear field components. This FE-submodel is applicable in realistic deformation and failure analysis of blind rivet connection with any anisotropic join partner under thermo-mechanical loads. It is also a practical engineering-tool which reduces modeling efforts, computing methods and necessary experimental research. Additionally, described methodology can be applied in other join types (rivet, thread, press), offering the acceleration of calculation process in different material adapted connection methods in multimaterial lightweight structures.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.