Magnetic resonance imaging (MRI) is a widely used imaging modality to evaluate brain disorders. MRI generates huge volumes of data, which consist of a sequence of scans taken at different instances of time. As the presence of brain disorders has to be evaluated on all magnetic resonance (MR) sequences, manual brain disorder detection becomes a tedious process and is prone to inter- and intra-rater errors. A technique for detecting abnormalities in brain MRI using template matching is proposed. Bias filed correction is performed on volumetric scans using N4ITK filter, followed by volumetric registration. Normalized cross-correlation template matching is used for image registration taking into account, the rotation and scaling operations. A template of abnormality is selected which is then matched in the volumetric scans, if found, the corresponding image is retrieved. Post-processing of the retrieved images is performed by the thresholding operation; the coordinates and area of the abnormality are reported. The experiments are carried out on the glioma dataset obtained from Brain Tumor Segmentation Challenge 2013 database (BRATS 2013). Glioma dataset consisted of MR scans of 30 real glioma patients and 50 simulated glioma patients. NVIDIA Compute Unified Device Architecture framework is employed in this paper, and it is found that the detection speed using graphics processing unit is almost four times faster than using only central processing unit. The average Dice and Jaccard coefficients for a wide range of trials are found to be 0.91 and 0.83, respectively.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.
Mixed ligand complexes of CoII of the type [CoLL'(H2O)2] (where HL = 5-nitro salicyl - aldehyde, HL' = salicylaldehyde, 2-hydroxyacetophenone, 2-hydroxypropiophenone, 2-hydroxybenzophenone, 2-hydroxy-1-naphthaldehyde, pentane-2,4-dione, 1-phenyl - butane-1,3-dione or 1,3-diphenylpropane-1,3-dione) have been syn the sized and characterized by elemental analyses, TLC, conductances, magnetic moments, IR, electronic and FAB mass spectra.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.