Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cadmium (Cd) is toxic for humans, but its effects on the yield and quality of rice under contaminated irrigation conditions remain uncertain. In this study, paddy soils in the Red River Delta (Vietnam) were selected for experiments with the purpose of understanding the effects of Cd contaminated irrigation water on growth, yields, and grain Cd accumulation. In addition, biochar was produced from rice husk (BRH) and rice straw for preventing Cd infiltration into rice was also studied in this experiment. A field experiment was established with applicated BRH and straw into polluted paddy soil, as a result the Cd content in grains reduced significantly. The Cd contaminated soil was added to the BRH and rice straw (RS) with six ratios, including: (1) RS 2.5%, (2) BRH 2.5%, (3) RS-BRH: 1.25–1.25%, (4) RS 5.0%, (5) BRH 5.0%, (6) RS-BRH: 2.5–2.5%, (w:w). Besides, three content levels 0.01–0.05–0.5 mg/L of Cd in irrigation water were applied throughout crop season. The results showed that the Cd accumulation in rice was in the following order: roots > stems > seeds. With 3 contaminated irrigation levels which were applied, the Cd concentrations of 0.05 mg/L and 0.5 mg/L affected plant height and yield. However, the Cd content in grains under contaminated soil condition can be controlled from 82.47–83.94% by applying a BRH ratio from 2.5–5% (w:w).
2
EN
The investigations on the effects of biochar application in improving the physio-chemical properties of soil have been carried out in many studies; however, there are very few studies on the combined use of both biochar and clay-rich soil for poor nutrient soil reclamation. Therefore, this study demonstrates improved water retention and nutrient retention of sandy soil by using biochar and biochar combined with clay-rich soil. The experiments were conducted on a small scale (greenhouse) with nine different application rates of biochar and clay-rich soil were mixed and then cultivated peanut, along with the drip irrigation technique using field moisture limit (about 70-80%) was applied under the condition of ensuring a sufficient supply of NPK for plant’s growth. The results showed that at the rates from 10.0-15.0% (w/w) clay-rich soil mixed with from 0.5-1.5% (w/w) of biochar applied to the tested sandy soil resulted in the positive effects on soil water holding, bulk density, permeability, pH, CEC, OM, total N, total P and peanut yield. The physical and chemical characteristics of the tested sandy soil have been improved by time and the application rate of 10.0% clay-rich soil and 0.5% biochar had the highest efficiency of pod fresh weight and pod dry weight during three studied seasons.
EN
This research aims at illustrating the optimal functions of removing copper ions in aqueous solution by means of the electrocoagulation process in which portable solar power generators are used as renewable energy. A solar photovoltaic cell (PV), producing approximately 48A current intensity for 4-7 h per day, was sufficient to charge the lithium batteries completely during the day. This system was connected directly to the electrocoagulation tank. The Box-Behnken design (BBD) was applied to evaluate three effects of process factors: current density, the dose of electrolyte (NaCl), and application time. The results showed that an optimal efficiency of 99.01% Cu removal plus an energy savings of 1.039 kWh/m3 were obtained at a current density of 4 A/m2, the dosage of NaCl (electrolyte) of 1.87 g/L, and electrolysis time of 10 min. The chemical components of the sludge produced under these optimized conditions were determined by means of EDX. It was illustrated that the copper ions were the main elements of sludge, and nonhazardous compounds were contained. The PV-lithium battery system is considered to be an efficient alternative energy source toward sustainable development.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.