Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Monitoring of biological and chemical pollutants in large bodies of water requires the acquisition of a large number of in-situ measurements by a mobile sensor platform. Critical to this problem is an efficient path planning method, easily adaptable to different control strategies that ensure the collection of data of the greatest value. This paper proposes a deliberative path planning algorithm, which features the use of waypoints for a ship navigation trajectory that are generated by Genetic Algorithm (GA) based procedures. The global search abilities of Genetic Algorithms are combined with the heuristic local search in order to implement a navigation behaviour suitable to the required data collection strategy. The adaptive search system operates on multi-layer maps generated from remote sensing data, and provides the capacity for dealing with multiple classes of water pollutants. A suitable objective function was proposed to handle different sampling strategies for the collection of samples from multiple water pollutant classes. A region-of-interest (ROI) component was introduced to deal effectively with the large scale of search environments by pushing the search towards ROI zones. This resulted in the reduction of the search time and the computing cost, as well as good convergence to an optimal solution. The global path planning performance was further improved by multipoint crossover operators running in each GA generation. The system was developed and tested for inland water monitoring and trajectory planning of a mobile sample acquisition platform using commercially available satellite data.
EN
The probabilistic Ant Colony Optimization (ACO) approach is presented to solve the problem of designing an optimal trajectory for a mobile data acquisition platform. An ACO algorithm optimizes an objective function defined in terms of the value of the acquired data samples subject to different sets of constraints depending on the current data acquisition strategy. The analysis presented in this paper focuses on an environment monitoring system, which acquires in-situ data for precise calibration of a water quality monitoring system. The value of the sample is determined based on the concentration of the water pollutant, which in turn is obtained through processing of multi-spectral satellite imagery. Since our problem is defined in a continuous space of coordinates, and in some strategies each point is able to connect to any other point in the space, we adopted a hybrid model that involves a connection graph and also a spatial grid.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.