Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Celem niniejszego artykułu jest zaprezentowanie możliwości zastosowania naziemnego skaningu laserowego (ang. TLS terrestrial laser scanning) w inwentaryzacji przestrzennej komór przepływowych hydrozespołów, jak również przedstawienie możliwości jakie stwarza wykorzystanie przestrzennego modelu 3D w analizach wykorzystujących zagadnienie inżynierii odwrotnej. W celu pozyskania informacji przestrzennej obiektu hydrotechnicznego wykorzystano technikę naziemnego skaningu laserowego. Pomiar przeprowadzono z zastosowaniem skanera fazowego średniego zasięgu firmy Z+F Imager 5006h oraz tachimetru Leica TCRP1201+. Przedmiotem pomiaru był zespół czterech komór przepływowych zespołów hydrotechnicznych (hydrozespołów) w Elektrowni Wodnej Dębe, opróżnionych z wody na czas skanowania. Gęstość chmur punktów podczas skanowania w komorach wlotowych oraz rurach ssawnych odpowiadała pojedynczym milimetrom. Pomiar współrzędnych (X,Y,Z) punktów odniesienia (nawiązania), niezbędnych do wykonania ostatecznej przestrzennej orientacji skanów, zrealizowano tachimetrem TCRP 1201+ z błędem średnim nie gorszym niż ±2 mm dla każdej współrzędnej. Maksymalna wartość odchyłki dostosowania dla orientacji wzajemnej poszczególnych skanów dla bardzo trudnych warunków jakie występowały w komorze dolnej zwanej rurą ssawną wyniosła 9,4 mm z błędem średnim ±8,5 mm oraz 4,5 mm z błędem średnim ±3,4 mm w komorze górnej. Dla orientacji zewnętrznej, do wspólnego lokalnego układu współrzędnych, uzyskano odpowiednio maksymalną odchyłkę dostosowania równą 13,4 mm z błędem średnim ±11,3 mm (w komorze dolnej) oraz 4,9 mm z błędem średnim ±6,3 mm (w komorze górnej). Pomimo utrudnień związanych z trudnymi warunkami pomiaru (wilgotność 100% i spływająca po ścianach woda) potwierdzono, że dane z naziemnego skaningu laserowego mogą stanowić kompleksowe źródło wiarygodnych danych o geometrii obiektu. Pozyskany materiał stanowi bazowy materiał do wykonywania analiz merytorycznych przez specjalistów z zakresu budownictwa wodnego i mechaniki budowli. Dane te pozwalają dokonywać oceny stabilności i bezpieczeństwa obiektu oraz prowadzić prace modernizacyjne.
EN
This paper aims to present the possibility of using terrestrial laser scanning (TLS) of medium range in the spatial inventory of hydropower flow chambers of the Kaplan's turbine units and present the opportunities created by using a 3D spatial model in the analysis using the issue of reverse engineering. To obtain spatial information of the hydrotechnical object, terrestrial laser scanning technique was used. The measurement was carried out using a mid-range phase scanner Z+F Imager 5006h and a total station Leica TCRP1201+. The measurement object was a set of four flow chambers of the Kaplan turbine units (hydrosets) at Dębe Hydroelectric Power Plant, emptied of water for the time of scanning. The density of point clouds during scanning in inlet chambers and suction pipes was assumed about 1 mm. The measurement of (X,Y,Z) coordinates of reference points (reference), necessary for the final spatial orientation of the scans, was made with a TCRP 1201+ total station with an average error of not worse than ±2 mm for each coordinate. The maximum value of the adjustment deviation for the mutual orientation of the individual scans for the very difficult conditions in the lower chamber called the suction pipe was 9.4 mm with a standard deviation of ±8.5 mm and 4.5 mm with a standard deviation of ±3.4 mm in the upper chamber. For the external orientation, to a common local coordinate system, a maximum adjustment deviation of 13.4 mm with a standard deviation of ±11.3 mm (in the lower chamber) and 4.9 mm with a standard deviation of ±6.3 mm (in the upper chamber) was obtained respectively. Despite the difficulties associated with the difficult measurement conditions (100% humidity and water running down the walls), it was confirmed that TLS could provide a comprehensive source of reliable data on the object's geometry. The material obtained provides a basis for factual analysis by hydraulic engineering and structural mechanics specialists. This data allows to assess the object's stability and safety and carry out modernisation works.
PL
Systemy geomonitoringu (z ang. Geodetic Monitoring Systems - GMS) oraz monitoringu stanu konstrukcji (SHM) odgrywają obecnie kluczową rolę w kompleksowym zarządzaniu ryzykiem obiektów inżynierskich - zarówno na etapie ich budowy, jak też późniejszego utrzymania. Systemy takie, coraz częściej wspierane sztuczną inteligencją, pozwalają na precyzyjne i kompleksowe zarządzanie infrastrukturą stanowiąc istotny element nowoczesnego procesu inwestycyjnego. Powstająca w trakcie ich praktycznej implementacji baza wiedzy jest obecnie podstawą zintegrowanych systemów geoinformacyjnych zapewniających bezpieczeństwo konstrukcji oraz prawidłową realizację wykonawczą. Od wielu lat obserwujemy intensywny wzrost liczby dostępnych rozwiązań, oferowanych przez producentów technologii geoinformacyjnych. Jednakże, często proponowane rozwiązania ograniczają się głównie do zamkniętych środowisk komputerowych ukierunkowanych na obsługę konkretnych instrumentów. W zakresie tym, niewiele jest rozwiązań o otwartej strukturze i otwartym źródle. Co więcej, możliwości oferowane przez producentów – czyli moduły, funkcje i procedury – zwykle nie odpowiadają rzeczywistym wyzwaniom pojawiającym się w trakcie geodezyjnej i budowlanej obsługi konkretnego obiektu. Uwarunkowania te powodują realne zapotrzebowanie na elastyczne, mobilne i w pełni skalowalne systemy, najlepiej dostosowane do konkretnych potrzeb użytkowników. Rozwiązanie takie, powstające w ramach projektu finansowanego przez NCBiR proponują autorzy niniejszego artykułu. W zakresie merytorycznym, opracowano wielowariantowe rozwiązanie algorytmiczne bazujące na danych ciągłych dostarczanych przez tachimetry skanujące. Działanie algorytmów zostało przetestowane z wykorzystaniem trzech wysokiej klasy instrumentów. Uzyskane wyniki badań potwierdzają wysoką innowacyjność opracowywanego systemu.
EN
Geomonitoring systems (GMS) and Structural Health Monitoring (SHM) play a crucial role in the comprehensive risk management of infrastructural facilities - both during their construction and subsequent maintenance. Such systems, increasingly supported by artificial intelligence, allow precise and comprehensive infrastructure management, constituting an essential element of the modern investment process. The knowledge base created during their practical implementation is now the reference for integrated geoinformation systems ensuring the safety and proper execution of construction projects. For many years, one can observe intensive growth in the number of available solutions offered by manufacturers of geoinformation technologies. However, the proposed solutions are often limited to closed computer environments operating specific instruments obtained from manufacturers. There are few available open-architecture and open-source solutions in the market. Moreover, the offered capabilities - modules, functions, and procedures - usually do not correspond to the real challenges that arise during quantity surveying and structural monitoring supporting construction sites. Such conditions create a vital need for flexible, mobile and fully scalable systems best suited to specific user needs. In this article, the authors propose a unique solution funded by the National Centre for Research and Development responding to such demands. In the article, the authors demonstrate such a solution originating within the framework of a project funded by the National Centre for Research and Development. In terms of content, a multi-variant algorithmic resolution based on continuous data provided by scanning total stations has been developed. The performance of the algorithms was tested using three different high-end instruments. The obtained test results confirm the high innovativeness of the developed system.
PL
Omówiono tematykę badań naukowych w zakresie geodezyjnych pomiarów inżynieryjnych, monitoringu geodezyjnego, analiz dokładności i niezawodności sieci geodezyjnych, zastosowania nowoczesnych technik pomiarowych. Efektem tych prac jest rozwój technologiczny i wdrażanie do praktyki nowych bądź udoskonalonych rozwiązań pomiarowych i metod opracowania wyników pomiarów.
EN
The subject of scientific research presented in this article shows that research in the field of geodetic engineering measurements, geodetic monitoring, analysis of the accuracy and reliability of geodetic networks, using modern measurement techniques are carried out with great intensity, result in technological development and implementation of new or improved of the measurements solutions and methods of elaborating the measurement results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.