Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The purpose of this study is to explore the optimization of support structures for horizontal pressure vessels using simulation modeling. The research aims to reduce the mass of the support while ensuring structural integrity and identifying opportunities for future improvements in materials and design. Design/methodology/approach: The research was conducted by creating a three-dimensional support model in SolidWorks, compliant with GOST standards. The stress-strain behavior and optimization of the support structure were analyzed using SolidWorks’ Simulation module, which employs the finite element method (FEM). Non-uniform load distributions, such as sinusoidal and parabolic loads, were applied during the loading process to enhance the accuracy of the simulation without incorporating the vessel body itself. Findings: The simulation results showed that optimizing the support structure led to a 15% reduction in its mass. Even though this also resulted in a 23% increase in equivalent stresses in critical areas, the support structure remains safe to operate, with a strength reserve factor under static loads exceeding 2. Research limitations/implications: Further research should include simulations that account for the type and properties of connections between elements, particularly weld calculations. Additionally, future studies could explore the use of higher-grade steels than the tested 09G2C steel to achieve further mass reductions, provided the cost is justifiable. Practical implications: This study is particularly relevant for the design of pressure vessel supports used in vehicles, trailers, and semi-trailers transporting liquids or liquefied hydrocarbon gases. Reducing the mass of support structures can increase payload capacity, offering significant commercial benefits in transportation efficiency. Social implications: A lighter, optimized support structure can contribute to more fuel-efficient transportation of liquid and gas materials, thereby reducing the environmental impact of logistics operations. Originality/value: The originality of this study lies in the combined use of topological and parametric optimization techniques for modeling horizontal pressure vessel supports. The paper provides valuable insights into how simulation-based optimization can lead to significant mass reductions while maintaining structural safety. This research is particularly useful to engineers and designers working on pressure vessel supports for transportation applications.
EN
Today, gas-liquid separators are usually used for the purification of gas mixtures from droplet liquid, and there are many designs of which. However, in order to improve the efficiency of their work, increase throughput, reduce mass and dimensions, they are constantly being improved. Usually, developing a new or improving an existing separator design is a long-term and relatively expensive process. Today, computer programs that implement the finite element method make it possible to speed up and reduce the cost of designing both a gas separator and other equipment. FloEFD program is one of these programs. However, it is more convenient during design to use one computer program that allows you to build 3D models (CAD) and in the same program to use a module for simulating the movement of gas and liquid flows (CFD). Such a program is SolidWorks with the FlowSimulation application module. As for the physical processes that occur during the operation of gas separators, they are quite complex, since a multiphase gas flow with an existing liquid phase is simulated. In the article, simulation modeling of the C-2-1 separator was carried out and the values and distributions of velocities and pressures in its various cross-sections were determined. Special attention was paid to the following cross-sections of the separator: along the axis of its inlet pipe; in the middle is the spigot of the blade screw; on a block of blinds. The difference in pressure at the outlet and inlet of the separator was determined, which is 20267 Pa. Based on the simulation results obtained, recommendations are given for further research and optimization of the separator design. The main parameter that characterizes the degree of separation of liquid from gas in the separator is the efficiency factor, which depends on the design of the separator, thermobaric conditions, parameters of the technological scheme, composition and physical and chemical properties of the gas-liquid flow. As a result of simulated model-ing of the separator, its efficiency coefficient was determined when it extracted droplet liquid from the gas-liquid mixture in its various fractions (from 0.01 to 0.1 mm). The efficiency factor is about 100%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.