Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Zirconocene catalysts supported on modified and nonmodified silica
EN
The temperature-programmed desorption (TPD) technique was used to study, by mass spectrometry (MS), the desorbates released from Si02-supported MAO (I) and SiO2-supported Cp2ZrCl2 (II) surfaces. With II, Cp groups were found to be copiously released at temperatures exceeding 200°C. Hence, decomposition of Cp2ZrCl2 while the compound is being heterogenized, cannot explain the low activity of the catalyst II in which Cp2ZrCl2 is chemically bonded to the carrier surface through OH groups. The MS (intensity vs. temperature) curves recorded for the I desorbates exhibit maxima (Fig. 2) for m/z = 15-16 at about 200°C and 400°C. They represent the methyl groups liberated on thermal destruction of =A1-C- bonds in respectively AlO(Me)2 and AlO2Me. At about 400°C, the MAO oligomer molecules were fragmented to produce AlOMe (m/z = 58), A1OA1 (m/z = 70), AlOMe2 (m/z = 73), AlO2Me (m/z = 74), A13O3 rings (m/z = 131), and (A13O3)-O- rings (m/z = 147). Alternating adsorption (up to 8 times) of AlMe3 vapor followed by H2O vapor on SiO2 surface was tried to synthesize SiO2-supported MAO with no "free" AlMe3. As a result, surface structures of the type =Si-O-(AlMeO)n (n = 8) were produced. The MAO thus synthesized was showed by TPD studies to have a linear or a planar net structure.
PL
Z powierzchni nośnika (SiO2), na którym zakotwiczono metyloaluminoksan (MAO) (układ I) lub Cp2ZrCl2 (układ II) uwalniano metodą temperaturowo programowanej desorpcji (TPD) produkty termicznego rozkładu, które następnie badano metodą spektrometrii masowej. Stwierdzono, że z układu II grupy cyklopentadienylowe odszczepiały się dopiero w temperaturze przekraczającej 200°C, zatem obserwowana mała aktywność w polimeryzacji etylenu układu II, w którym Cp2ZrCl2 jest chemicznie związany z powierzchnią nośnika poprzez grupy OH, nie jest spowodowana rozkładem grup Cp2ZrCl2 podczas otrzymywania katalizatora. Na krzywych TPD układu I (SiO2/MAO) wystąpiły maksima w temp. 200°C i 400°C odpowiadające wartości m/z = 15-16, które przypisano uwalnianiu się grup metylowych w wyniku termicznego rozpadu w temp. 200°C wiązania =A1-C we fragmentach Al(O)Me2 i AIO2Me. Natomiast w temp. 400°C rozkład oligomerów MAO ujawnił się uwalnianiem fragmentów AlOMe, A1OA1, AlOMe2, Al2OMe oraz pierścieni AI3O3 i (Al3O3)-O-. Zbadano możliwość wytworzenia MAO bezpośrednio na powierzchni SiO2/ na którą działano przemiennie parami AlMe3 i H2O (SiO2/MAO*). Metodą TPD stwierdzono powstawanie powierzchniowego układu typu =Si-O-(AlMeO)n (n = 8) o budowie liniowej lub płaskiej. Ta budowa MAO* jest niekorzystna w porównaniu z typową trójwymiarową strukturą cykliczną MAO i powoduje brak aktywności Cp2ZrCl2 na takim nośniku w polimeryzacji etylenu.
2
Content available remote Polymerization of ethylene over zeolite-supported catalysts
EN
Zeolites including Na-form ZSM-5 (Si/Al = 42) and natural zeolite (Shivyrtuisk deposit: clinoptilolite 60 š 6%, water 14.2%) were studied as supports for olefin polymerization organometallic catalysts. Zeolite-fixed aluminoxanes, viz., anchored to the surface of the support, were prepared by partially hydrolyzing alkylaluminums (AlMe3, AlEt,Cl) with zeolite's internal water. Thus modified, the zeolites were made to react with transition metal compounds like Cp2ZrCl2 or VOC13. The product of the reaction of zeolites' internae water with AlMe3 was made to react with Cp2ZrCl2, and the resulting product was found to be active in the polymerization of ethylene with no additional activation carried out with MAO. In this way, an active metallocene catalyst was prepared without the use of MAO. Yet, when added as cocatalyst, MAO still activated the system, unlike the other conventional organoaluminum cocatalysts. The PE produced over the ZSM-5 (H2O)/AlMe3/Cp2ZrCl2 system had a higher M and a higher melting point than PE prepared over a homogeneous Cp2ZrCl2 + MAO catalyst system.
PL
Przedstawiono sposób otrzymywania aluminoksanu zakotwiczonego na powierzchni nośnika polegającym częściowej hydrolizie związku glinoorganicznego (MeaAl, Et2AlCl)w' reakcji z wodą zawartą w nośniku. Tak zmodyfikowany zeolit podda-' wano reakcji ze związkami metalu przejściowego (Cp2ZrG2, VOC1,{| Stwierdzono, że produkt oddziaływania uwodnionej postaci zeolitii ZSM-5 z metyloglinem po następnej reakcji z CpjZrCS zachowuje sit aktywnie w polimeryzacji etylenu bez stosowania dodatkowej aktywacji przy użyciu metyloaluminoksanu (MAO) lub innego kokatalizatora glinoorganicznego. Okazało się też, że MAO wprowadzony dodatkowo jako kokatalizator nadal działa aktywująco na układ, podczas gdy kokatalizatory glinoorganiczne takiego działania nie wykazywały. Ustalono, że polietylen otrzymany z zastosowaniem układu katalitycznego ZSM-5 * (H2O)/AlMe3/Cp2ZrCl2 odznaczał się większym ciężarem cząsteczkowym i wyższą temperaturą topnienia niż PE otrzymany wobec homogenicznego katalizatora Cp2ZrCl2 + MAC (tabela 1).
EN
Ethylene was sequentially homopolymerized (35°C, 15-90 min) and copolymerized (35°C, 25-30 min) with 1-hexene or 1-octene over a Cp2ZrCl2/MAO or a C2H4(Ind)2ZrCl2/MAO catalyst in toluene as solvent; a-olefin conversions were 55-60 mol %. The preliminary homopolymeriza-tion of ethylene was found to affect only slightly the composition and the MW and MWD property data of the resulting ethylene-hexene (CEH) and ethylene-octene (CEO) copolymers. HDPE/CEH and HDPE/CEO reactor mixtures (RM) were synthesized, containing various proportions of the copolymers (Table 2). The RM components were found to cocrystallize during the polymerization process. Mechanical property data were determined for pure and for modified HDPE (Table 3). With the copolymer endowed with desired properties and introduced into HDPE in an appropriate amount, high-strength and simultaneously high-MFR materials can be prepared.
PL
Etylen poddawano w temp. 35°C w środowisku toluenu dwuetapowej sekwencyjnej homopolimeryzacji lub kopolimeryzacji z 1-heksenem lub 1-oktenem w obecności katalizatora cyrkonocenowego Cp2ZrCl2/MAO albo C2H4(Ind)2ZrCl2/MAO (MAO = metyloaluminoksan); stosunek [Al]:[Zr] wynosił przy tym 2000. W uzyskanych produktach zawierających 4,4-8,0% mol a-olefiny oznaczano zawartość rozgałęzień CH3/100 C (tabela 1). Stwierdzono, że wstępna homopolimeryzacja etylenu nieznacznie wpływa na skład oraz na wartości ciężaru cząsteczkowego i rozkładu ciężaru cząsteczkowego uzyskanych kopolimerów. Otrzymano różniące się składem "mieszaniny reaktorowe" PE-LD z kopolimerem etylen/1-heksen (CEH) i PE-LD z kopolimerem ety-len/1-okten (CEO) i scharakteryzowano ich właściwości (M,", Mw/M", gęstość, temperatura topnienia - tabela 2). Stwierdzono, że składniki tych mieszanin wykazują zdolność współkrystalizowania bezpośrednio podczas polimeryzacji. Porównano właściwości mechaniczne samego PE-HD i kopolimeru CEH oraz mieszanin PE-LD z CEH (tabela 3). Stwierdzono, że wprowadzenie do PE-HD odpowiedniej ilości kopolimeru etylen/a-olefina o dobranych właściwościach pozwala na uzyskanie tworzywa o dużej wytrzymałości mechanicznej w połączeniu z odpowiednią wartością masowego wskaźnika szybkości płynięcia.
EN
The promoting effect of alfa-olefin (propylene) on polymerization of ethylene over Ziegler-Natta catalysts was investigated in a two-stage homo- and co-polymerization of ethylene and propylene, ethylene and 3-methyl-1-butene over titanium-magnesium catalysts and aluminum hydroxide-supported vanadium catalysts differing in structure and composition. With the catalysts, the enhancement effect is related to the increase in the number of ethylene active centers. This increase is related to the catalyst ma-trix structure and morphology of the nascent polymer and is determined by the liability of the catalyst matrix to become fragmented by the nascent polymer.
PL
Zbadano kinetykę dwuetapowej homo- i kopolimeryzacji etylenu z propylenem oraz etylenu z 3-metylo-l-butenem wobec katalizatorów tytanowo-magnezowych i wanadowych osadzonych na wodorotlenku glinu. W przypadku katalizatorów heterogenicznych osadzonych na A1(OH)3 efekt promocyjny propylenu jest związany ze wzrostem liczby centrów aktywnych. Efekt ten zależy od struktury matrycy katalizatora i morfologii powstającego polimeru oraz od podatności matrycy na rozpad (fragmentację) powodowany przez powstający polimer. W przypadku katalizatorów (I, II) w których wanad jest związany kowalencyjnie w kompleksie wanadu z aluminoksanem, rozmieszczenie grup OH nośnika decyduje o rozmieszczeniu kompleksu na powierzchni katalizatora. Fragmentacja tych katalizatorów zależy głównie od charakteru nośnika (wymiary i struktura porów) oraz przebiegu jego rozpadu. W przypadku pozostałych katalizatorów (IIIa, IIIb), proces fragmentacji matrycy katalizatora przez powstający kopolimer powoduje rozpad fazy zdyspergowanej związku katlizującego, zwiększenie powierzchni katalizatora i, w rezultscie, wzrost liczby centrów aktywnych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.