Given its importance in water resources management, particularly in terms of minimizing flood or drought hazards, precipitation forecasting has seen a wide variety of approaches tested. As monthly precipitation time series have nonlinear features and multiple time scales, wavelet, seasonal auto regressive integrated moving average (SARIMA) and hybrid artificial neural network (ANN) methods were tested for their ability to accurately predict monthly precipitation. A 40-year (1970–2009) precipitation time series from Iran’s Nahavand meteorological station (34°12’N lat., 48°22’E long.) was decomposed into one low frequency subseries and several high frequency sub-series by wavelet transform. The low frequency sub-series were predicted with a SARIMA model, while high frequency subseries were predicted with an ANN. Finally, the predicted subseries were reconstructed to predict the precipitation of future single months. Comparing model-generated values with observed data, the wavelet-SARIMA-ANN model was seen to outperform wavelet-ANN and wavelet-SARIMA models in terms of precipitation forecasting accuracy.
PL
Prognozowanie opadów, ze względu na ich znaczenie w gospodarce zasobami wodnymi, szczególnie w zmniejszaniu ryzyka powodzi czy susz, było już przedmiotem wielu badań. Serie miesięcznych opadów mają właściwości nieliniowe i różne skale czasowe, w związku z czym przetestowano różne metody: wavelet, metodę zintegrowanej sezonowej autoregresji z ruchomą średnią (SARIMA) i hybrydową metodę sztucznych sieci neuronowych (ANN) pod kątem ich zdolności do dokładnego przewidywania miesięcznych opadów. Czterdziestoletnią (1970–2009) serię opadów z irańskiej stacji meteorologicznej w Nahavand (34°12’N, 48°22’E) rozłożono na jedną podserię o niskiej częstotliwości i kilka podserii o wysokiej częstotliwości występowania opadów przez transformację falkową. Podserie o niskiej częstotliwości prognozowano za pomocą modelu SARIMA, podczas gdy podserie o wysokiej częstotliwości prognozowano, stosując ANN. Na koniec prognozowane podserie zrekonstruowano celem przewidywania opadów w poszczególnych miesiącach w przyszłości. Porównanie wartości generowanych przez model z danymi z obserwacji wykazało lepszą dokładność prognozowania opadów za pomocą modelu wavelet-SARIMA-ANN niż za pomocą modeli wavelet-ANN i wavelet-SARIMA.
One of the non-intrusive and accurate methods of measuring void fraction in two-phase gas liquid pipe flows is the use of the gamma-transmission void fraction measurement technique. The goal of this study is to describe low-energy gamma-ray densitometry using an 241Am source for the determination of void fraction and flow regime in water/gas pipes. The MCNP code was utilized to simulate electron and photon transport through materials with various geometries. Then, a neural network was used to convert multi-beam gamma-ray spectra into a classification of the flow regime and void fraction. The simulations cover the full range of void fraction with Bubbly, Annular and Droplet flows. By using simulation data as input to the neural networks, the void fraction was determined with an error less than 3% regardless of the flow regime. It has thus been shown that multi-beam gamma-ray densitometers with a detector response examined by neural networks can analyze a two-phase flow with high accuracy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.