Fuzzy Q-Learning algorithm combines reinforcement learning techniques with fuzzy modelling. It provides a flexible solution for automatic discovery of rules for fuzzy systems in the process of reinforcement learning. In this paper we propose several enhancements to the original algorithm to make it more performant and more suitable for problems with continuous-input continuous-output space. Presented improvements involve generalization of the set of possible rule conclusions. The aim is not only to automatically discover an appropriate rule-conclusions assignment, but also to automatically define the actual conclusions set given the all possible rules conclusions. To improve algorithm performance when dealing with environments with inertness, a special rule selection policy is proposed.
PL
Algorytm Fuzzy Q-Learning pozwala na automatyczny dobór reguł systemu rozmytego z użyciem technik uczenia ze wzmocnieniem. W niniejszym artykule zaproponowana została zmodyfikowana wersja oryginalnego algorytmu. Charakteryzuje się ona lepszą wydajnością działania w systemach z ciągłymi przestrzeniami wejść i wyjść. Algorytm rozszerzono o możliwość automatycznego tworzenia zbioru potencjalnych konkluzji reguł z podanego zbioru wszystkich możliwych konkluzji. Zaproponowano także nową procedurę wyboru reguł dla polepszenia prędkości działania w systemach z bezwładnością.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.