Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the high-speed clinching named electromagnetic-driven clinching (EMDC) method was adopted and analyzed by experiment, numerical simulation and theoretical calculation. The deformation behavior and mechanical properties of 5052-O EMDC joints have been investigated. The result showed that the punch speed can reach 3 m/s, The maximum strain rate of the EMDC process can reach 6000 s−1. The EMDC process can be divided into deep drawing, interlocking, and unloading stages. The neck thickness tN changes mainly in deep drawing stage. The interlock value tU changes mainly in interlocking stage. The discharge voltage level can precisely control the formation of the joint. With the increase of the discharge voltage, the tN did not change significantly, while the tU increased and mechanical properties of the joint gradually improved. When the discharge voltage was 3.4 kV, the shear and tensile joint strength were 1571 N and 746 N, respectively. The simulation results and the theoretical calculations were in good agreement with the experimental results.
EN
Hydroforming (HF) can precisely control the shape of complex parts and has been widely used in the automotive and aviation fields. However, HF as a low-strain rate process is not conducive to improve the plastic deformation property of materials. Electromagnetic forming (EMF) is a high-speed forming method and can significantly increase the material-forming limit, but possesses poor shape-control ability for complex parts with intricate shapes and curves. In this study, electromagnetic hydraulic forming (EMHF) process was proposed, and the dynamic deformation behaviors of 5052-O aluminum alloy sheet during EMF and EMHF were reported. Compared with EMF, during EMHF the sheet was more closely bonded to the die, and the forming accuracy was higher. Numerical simulation results show that the maximum deformation velocity and the maximum equivalent plastic strain rate of the 5052-O sheet are 93.4 m s−1 and 7329.6 s−1, respectively. The EMHF process can be categorized as a high-strain rate forming method. For EMHF process, the sheet metal with a rounded angle error of 0.3 mm could be obtained. Therefore, EMHF process can improve the plastic deformation capacity of the material and exhibits high forming accuracy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.