The paper deals with a theoretical study on blood flow in a stenosed segment of an artery, when blood is mixed with nano-particles. Blood is treated here as a couple stress fluid. Stenosis is known to impede blood flow and to be the cause of different cardiac diseases. Since the arterial wall is weakened due to arterial stenosis, it may lead to dilatation /aneurysm. The homotopy perturbation technique is employed to determine the solution to the problem for the case of mild stenosis. Analytical expressions for velocity, shear stress at the wall, pressure drop, and flow resistance are derived. The impact of different physical constants on the wall shear stress and impedance of the fluid is examined by numerical simulation. Streamline patterns of the nanofluid are investigated for different situations.
The influence of thermal emission and unvarying magnetic field of convective heat and mass transfer of a rotating nano-liquid in an upright conduit constrained by a stretching and motionless wall is studied. The temperature, concentration profile, primary and secondary velocities have been computed through similarity transformation and fourth-order Runge-Kutta shooting technique. The objective of this article is to measure the impact of emission constraint, Brownian movement constraint and Eckert number, thermophoresis constraint, Prandtl number, space, and temperature-dependent heat source constraint on velocity. The results are presented in tables and graphs. Further, various constraint impacts on the skin friction coefficient, heat and mass transfer rates are also explored. This work is pertinent to biotechnological and engineering uses, like mass and heat transfer enhancement of microfluids and design of bioconjugates.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.