Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The copper and copper alloys’ ingots have been subjected to structural observation in order to estimate the Peclet Number at which these ingots were solidifying. It was stated that the formation of columnar structure within the ingots occurred at a high Peclet Number, higher than the threshold value of this parameter, Pe = 500. The formulated relationships of the Growth Law correspond to a high Peclet Number due to application of the adequate development in series of the Ivantsov’s function. The Growth Law has been developed on the basis of the definition of the wavelength of perturbation which leads to the dispersion of the planar s/l interface. New definition of the index of stability connected with the behavior of solute concentration at the s/l interface has been delivered. The current definition is related to non-equilibrium solidification. The index can be easily calculated using some parameters delivered by a given Cu-X phase diagram. Physical meaning of the formulated Growth Law has also been presented.
EN
A brief description of the innovative mathematical method for the prediction of CET – localization in solidifying copper and copper alloys’ ingots is presented. The method is to be preceded by the numerical simulation of both temperature field and thermal gradient filed. All typical structural zones were revealed within the copper and copper alloys’ massive ingots or rods manufactured by continuous casting. The role of thermal gradient direction for the single crystal core formation has been enlightened. The definition for the index describing proportion between volume fraction of the columnar structure and volume fraction of the equiaxed structure has been formulated by means of the interpretation of some features of the liquidus isotherm velocity course. An attempt has been undertaken to apply the developed mathematical method for the structural zones prediction in the rods solidifying under industrial conditions. An industrial application has been shown, that is, it was explained why the innovative rods should be assigned to the overhead conductors in the electric tractions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.