Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Success in growing an agricultural crop is considered to be the maximum realisation of the potential of a variety, as well as a stable level of its yield over the years. In the article, the results of studies, conducted with the narrow-leaved lupine (Lupinus angustifolius L.) on the grey forest soil under the Forest-Steppe conditions were analysed. The peculiarities of the influence of hydrothermal conditions upon the duration of the period from sowing to the emergence of seedlings, interphase periods and the growing season, on the whole, were shown. An analysis of the influence of weather conditions over the years of the research and agrotechnical measures upon the generative development of the plants, the formation of the crop grain yield, as well as its quality upon the variant, recommended for production, in comparison with the control variant, was presented. The weather conditions that developed during the period from sowing to full ripeness of the narrow-leaved lupine plants differed significantly over the years of research, influenced the duration of the period from sowing to germination (from 7 to 15 days), the growing season of the crop, on the whole, (from 79 to 101 days), growth and development of plants, and – as a result– on the level of the yield. The seed yield in the experiment was unstable over the years even in the recommended production variant – from 3.28 to 2.10 t∙ha–1, that is, with a difference in the most favourable and unfavourable years of 1.18 t∙ha–1. The most favourable conditions for the formation of the crop were in 2016 on the variant, recommended for the production, and it provided for the application of N68P48K66, sowing lupine of the “Pobeditel” variety with an inter-row spacing of 45 cm, a seeding rate of 1.2 million germinating seeds t∙ha–1, treated with a bioinoculant with a bioprotectant, and also foliar top dressing with microfertiliser at the IV stage of plant organogenesis. The year 2020 turned out to be the most unfavourable, as evidenced by the minimum yield level of 2.10 t∙ha–1 and the index of the conditions of the year –0.51.
EN
The performance of the No-till treatment after systematic surface tillage with crop rotation allowed the formation of stocks of productive moisture at the average level of 155 mm, which corresponded to the stocks of moisture after ploughing and were significantly higher (by 10–15 mm) than those under systematic surface tillage and No-till treatment after the ploughing. During the April-June and June-July periods, ploughing consumed 67% and 33% of the spring moisture supply, respectively; after surface tillage it was 62% and 38%, while after No-till following surface tillage it was 55% and 45%. This indicates a more optimal use of productive moisture stocks compared to ploughing, where moisture was used 1.2 times more intensively during the vegetative growth phase of grain and leguminous crops in the crop rotation. The highest consumption of productive water stocks during the April-July period was during ploughing at 62–69 mm and during surface tillage and No-till after surface tillage at 47–48 mm, which is 1.4 times less. The content of water-resistant aggregates 5–1 mm in 0–30 cm layer of soil under tillage was 3.31%, whereas under surface tillage and No-till treatment in different combinations – 1.87–2.21 times more. Increasing the content of water-resistant aggregates of the most valuable size, with increasing of humus content in 0–20 cm layer of soil by 0.07% under surface tillage and No-till treatment on its background led to improvement of crop moisture regime in agrocenosis by 10–15%.
EN
The paper summarises the results of the comprehensive scientific research carried out in the form of a two-factor stationary experiment (5 primary tillage systems × 3 fertilization systems) with rotation (2016–2020) of cereal crops (winter wheat – grain maize – spring barley – soybean) in grey forest fine sand and light loam soil. The effectiveness of the tested agricultural production method has been proven by the amplitudes of the actual cropping capacities: winter wheat – 2.80–5.00 t∙ha–1; grain maize – 4.16–8.89 t∙ha–1; spring barley – 1.78–4.45 t∙ha–1; soybean – 1.02–3.17 t∙ha–1. The rehabilitation of the physical, agrochemical and biological status of the edatope and the consolidation of the physiological processes in the grain cenoses achieved by the systemic approach to the soil tillage and fertilisation have provided for an increase in the natural biological potential of the plough land by a factor of 1.3–1.8 (from 2.96 to 5.21 t∙ha–1 of grain units, units for the equivalent measuring of different plant cultivation products). Factographic justification has been provided for the environmental, technological and technical-and-economic feasibility of implementing agronomic technologies based on the adaptive combination of mouldboard and non-mouldboard tillage (to a depth of 6–45 cm) and organic and mineral fertilization system (6.5–7.0 t∙ha–1 of plant cultivation by-products + N70P58K68). In this case, the effective fertility of an area unit in crop rotation reaches 5.72 t∙ha–1 in grain units, the production cost of raised grain – 117 €∙t–1, the earning capacity – 788 € (ha∙year) –1, the level of plant cultivation profitability – 139%. In the comparable alternatives of the system-based soil tillage (every-year ploughing, subsurface blade tillage and especially tillage with disk implements), the indices estimated above are significantly lower.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.